Hi [[ session.user.profile.firstName ]]

Corning Scientific Seminar Series

  • Date
  • Rating
  • Views
  • バイオ医薬品製造におけるシングルユースシステム
    バイオ医薬品製造におけるシングルユースシステム コーニングインターナショナル株式会社ライフサイエンス事業部 石渡孝至 Recorded: Jun 6 2017 77 mins
    バイオロジクスの治験薬製造におけるシングルユース技術導入ポイントであります製品ソリューション、クローズドシステムおよび品質保証体制について概説します。

    再生・細胞医薬を中心にバイオ医薬品の製造開発が急速に進められております。

    幹細胞やヒトES / iPS細胞による再生医療を具現化する際に、最も大きな懸案事項となりますのが“質”、“量”そして“コスト”の問題があります。

    そこでコーニングは、安全、安価かつ簡便な最新シングルユース技術についてレギュレーション、導入事例によるマーケットトレンドを示しながら、トータルソリューションシステムのセルカルチャー(多層式大量培養容器)、チュービング&コネクション(プレアッセンブル特注、無菌接続)、パッケージング(培養 / 回収 / 凍結保存)、データインテグリティ(バーコードによるトレーサビリティ管理)、品質規格(成型施設環境、BSE/TSE、発熱物質(Pyrogen)、USPクラス6規格準拠 / 滅菌保証レベル / エンドトキシン規格 / QC試験)および品質に関するドキュメンテーションサポート(証明書、バリデーションバインダ)に関する情報を概説します。
  • Enabling CAR-T Screening in 3D Tumor Spheroids
    Enabling CAR-T Screening in 3D Tumor Spheroids Van Dang, D.V.M., Ph.D., Abhi Saharia, Ph. D., and Audrey Bergeron, Applications Scientist Recorded: Mar 30 2017 62 mins
    Webinar Date & Time: Mar 30 2017 12:00 p.m. EST

    Chimeric antigen receptor (CAR)-T cells, which are engineered to recognize target cell surface antigens expressed on tumor cells, have shown promise to affect complete remission in patients with B-cell malignancies. However, applying this approach to target solid tumors has resulted in adverse effects in clinical studies. Methods for testing different models of CAR-T cells in vitro can provide further insight into viable antigen targets. Historically, two-dimensional (2D) cell culture models have been used in drug discovery. However, more elaborate, three-dimensional (3D) cell culture models better mimic the in vivo tumor microenvironment and help bridge the gap between in vitro studies and clinical outcomes.

    In this special joint webinar, panelists from ProMab Biotechnologies, DiscoverX, and Corning Life Sciences will present data on a high-throughput, easy-to-use, highly reproducible method for screening CAR-T cells in a 3D cell culture model by combining various technologies.


    Speakers:
    Van Dang, D.V.M., Ph.D.
    Scientist and coordinator for CAR-T research
    ProMab Biotechnologies, Inc.

    Abhi Saharia, Ph. D.
    Director, Cell-based Assays and Biologics
    DiscoverX

    Audrey Bergeron
    Applications Scientist
    Corning Life Sciences
  • Surfaces for Organoid Culture
    Surfaces for Organoid Culture Nitin Kulkarni, Ph.D. Recorded: Feb 23 2017 50 mins
    3D culture is gaining pivotal importance for attaining in vivo-like conditions in a dish to study developmental cues as well as therapeutic possibilities. Organoid development promises to be one of the most important research tools in the near future. This presentation will cover:

    • Methodologies used in organoid culture
    • Matrices for growing organoids
    • Recovery of organoids for downstream applications

    Speaker Bio:

    Dr. Nitin Kulkarni is a member of the Scientific Support team at Corning Life Sciences. He has a Ph.D. in Biology and has worked on engineering transgenic mouse models for autoimmune diseases during his post-doctoral research at the Beth Israel Deaconess Medical Center in Boston, MA.
    In his current role, he supports researchers with applications related to cell culture including advanced surfaces and extracellular matrices, genomics, drug discovery and bioprocesses.
  • Rescheduled: Multicellular Tumor Spheroids in HTS: New Assays
    Rescheduled: Multicellular Tumor Spheroids in HTS: New Assays Wojciech Senkowski Recorded: Feb 1 2017 50 mins
    Three-dimensional cell cultures, and multicellular tumor spheroids in (MCTS) in particular, have recently become a widely used tool for preclinical anticancer drug testing in high-throughput screening (HTS) setup. However, even though MCTS have been applied for HTS, their use has been limited to simple assays, such as assessing cell viability or inhibition of growth.

    This webinar will cover new approaches to MCTS-based HTS. It will present a new, robust viability assay, well-suited for HTS and based on green fluorescent protein (GFP) used as a surrogate marker of spheroid viability. It will also review a first-ever approach to obtain information-rich transcriptomic data from drug-treated MCTS on a large scale. In addition, the presenter will demonstrate how this novel platform resulted in the identification of previously unrecognized, context-dependent drug responses of cancer cells and in findings with potential clinical relevance.

    In summary, this webinar will demonstrate new ways of how MCTS-based HTS can be used to provide unique insights into context-dependent biology and cellular drug responses.

    About the Presenter:

    Wojciech Senkowski will soon complete his Ph.D. in Medical Sciences at Uppsala University, Sweden. In his work, he looks for applications of various tumor spheroid models in high throughput drug screening. For his work, Wojciech has received the AACR Scholar-in-Training Award. He was also a presenter and expert panelist at the Genetic Engineering & Biotechnology News webinar on 3D cell cultures, sponsored by Corning in February of 2016.
  • The Impact of Soluble Factors and Substrate on Cell Culture
    The Impact of Soluble Factors and Substrate on Cell Culture Kevin Kelly Recorded: Nov 3 2016 48 mins
    Webinar: The Impact of Soluble Factors and Substrate on Cell Culture: Media Additives, Growth Factors, and Surface

    From basal media with feeder layers or serum to highly defined recombinant growth factors, cytokine, and extracellular matrix, there are many ways to grow the same cell type. The choice is dependent on scale, cost, control, skill, and regulatory factors.

    This webinar will cover:
    - Different ways to grow the same cell type
    - The actual material costs of various methods
    - Methods used to optimize formulations

    Speaker Bio:
    Kevin Kelly graduated from Hawaii Pacific University and for 15 years worked on process scale-up and optimization for extracellular matrix proteins, growth factors, cytokines, antibodies, ELISA kits, and Corning® BioCoat™ products.

    Currently he provides applications support for invasion, migration, permeability, transport, differentiation, and metabolism assays.
  • Current Trends in 3D and Organoid Cell Culture for Cancer Research
    Current Trends in 3D and Organoid Cell Culture for Cancer Research Marshall Kosovsky, Ph.D., Ömer H. Yilmaz, M.D., Ph.D.,Wojciech Senkowski, Recorded: Oct 4 2016 67 mins
    Corning was pleased to have recently sponsored a GEN webinar highlighting the latest techniques for 3D cell culture in cancer research.

    The use of 3D cell cultures has been rising sharply in recent years from its initial introduction, over two decades ago. Because 3D cultures more accurately mimic the cellular environment, they can be used to study various forms of cancer by fostering the growth of organoids that replicate key properties of in vivo organ systems or the original tumors from which they were derived.

    In addition, many 3D cultures are amenable to large-scale drug screens for rapid detection of phenotypic or genetic changes associated with therapeutic compounds—an approach that opens the door for the use of 3D culture as an integral part of personalized medicine.

    In this GEN webinar, panelists discussed how the latest 3D cell culture methods have facilitated breakthroughs in their research projects.

    Panelists:
    Marshall Kosovsky, Ph.D., Global Scientific Support Manager for Corning Life Sciences, will give a brief introduction into advances in Corning’s 3D culturing solutions.

    Ömer H. Yilmaz, M.D., Ph.D., Assistant Professor of Biology at the Massachusetts Institute of Technology, will describe his work on how adult stem cells and their microenvironment adapt to diverse conditions within the context of tissue regeneration and cancer initiation through the use of ex vivo intestinal organoid assays.

    Wojciech Senkowski, Doctoral candidate in the Department of Medical Sciences at Uppsala University in Sweden, will discuss his current work, which looks for applications of various tumor spheroid models in high-throughput drug screening for ways to identify novel compounds that target these cell populations
  • Using Microcarriers to Speed-up Your Scale-up.
    Using Microcarriers to Speed-up Your Scale-up. Jennifer Weber Recorded: Sep 15 2016 33 mins
    This presentation describes critical factors for selecting microcarriers, as well as starting protocols to help you optimize the attachment and expansion of cells in spinner flask and bioreactor environments.

    In addition, you’ll learn about new dissolvable microcarrier technology, which provides unique advantages for cells that cannot be easily separated from standard microcarriers.

    Speaker Bio:

    Jennifer Weber is a senior development scientist with Corning Life Sciences. She has helped develop a variety of products for culturing advanced cell types including Corning® Synthemax™, a synthetic, xeno-free surface, and Corning stemgro ® hMSC, a serum-free, chemically defined medium for hMSC culture.

    She recently transitioned to microcarrier product development and customer support for bioprocess applications. As part of this role, she facilitates customer adoption of Corning products for specific applications through protocol development, on-site technical support, and in-house customer-driven projects.
  • Understanding Cell Culture Media Composition to Improve Outcomes
    Understanding Cell Culture Media Composition to Improve Outcomes Brian Posey Recorded: Jul 28 2016 59 mins
    Cell culture media is required for successful and reproducible research but the catalog is full of acronyms and various formulation tables. Classical mammalian cell culture media formulations are very diverse both in terms of the number available and the concentration of constituents. Additionally, each medium was designed for specific cell types and culturing conditions.

    This webinar will cover:
    •The composition, characteristics, environmental factors, and additional supplements required to create optimal conditions for growth and productivity.
    •Determining the right formulation for your application.
    •Serum usage and helpful tips for optimizing your culture conditions.

    Speaker Bio:
    Brian Posey is a Product Development Manager for cell culture media at Corning Life Sciences. Brian has over 10 years experience in cell biology and industrial scale cGMP manufacturing of both liquid and powder cell culture media. Since joining Corning in 2012, Brian has led numerous innovative technology projects for the media business ranging from customer technology transfer for production scale-up to developing new serum-free media for industrial and stem cell lines.
  • In Vitro Characterization of Species Difference of OATP
    In Vitro Characterization of Species Difference of OATP Na Li, Ph.D. Recorded: May 25 2016 52 mins
    Organic anion-transporting polypeptides (OATPs) play an important role in hepatic uptake of a variety of clinically important drugs. The significant differences in OATP/Oatp-dependent drug transport between human and preclinical species presents a challenge for interspecies extrapolation of drug pharmacodynamics and pharmacokinetics. The assessment of the difference in hepatic uptake between species using an in vitro model is highly desired to support mechanistic studies and to understand the differences observed between species in vivo.

    The Corning® TransportoCells™ model has demonstrated significant value in terms of supporting in vitro assessment of drug interaction with SLC transporters in drug discovery and development. Recently, several animal species of Oatps were introduced into the Corning TransportoCells portfolio. This webinar will focus on the development of the newly available animal species and characterization of the differences in OATP/Oatp in substrate specificity and kinetics using this "thaw and go" model.
  • Specialized Applications Using the Corning® Spheroid Microplate
    Specialized Applications Using the Corning® Spheroid Microplate Hilary Sherman, Applications Specialist & Audrey Bergeron, Application Specialist Recorded: Apr 22 2016 47 mins
    Three-dimensional (3D) cell culture models, which offer significant improvements over traditional two dimensional monolayer cell culture in terms of maintaining morphological and functional characteristics of tissue, are increasingly being incorporated in drug discovery as model systems to study disease or for screening for chemotherapeutic efficacy or drug toxicity. This presentation will demonstrate the use of Corning® spheroid microplates to culture and assay spheroids in a rapid and highly reproducible format that enables the formation of a single multi-cellular spheroid, centered in each well.

    Corning spheroid microplates are multiple well, cell culture plates with opaque walls and unique clear, round well-bottom geometry that utilize the Corning Ultra-Low Attachment surface coating. The coating is hydrophilic, biologically inert and non-degradable. Representative data will be shown exhibiting the use of the spheroid microplate in more specialized assays including the formation of neurospheres from neural stem cells (NSCs), a valuable model to study neurogenesis and neural development, as well as analysis of NSC proliferation and migration. We will also demonstrate the formation of hepatospheres using Corning HepatoCells, an immortalized alternative to primary human hepatocytes, in combination with the SCREEN-WELL Hepatotoxicity library from Enzo Life Sciences for 3D hepatotoxicity screening. Finally, we will show the use of the Corning spheroid microplate to generate spheroids comprised of multiple cell types, demonstrating the impact that including multiple cell types in 3D assays can have on therapeutic outcome in a chemotherapeutic assay.

Embed in website or blog