Hi [[ session.user.profile.firstName ]]

IOP Publishing

  • Date
  • Rating
  • Views
  • Photonic, plasmonic, and multiphysics simulations using CST STUDIO SUITE Photonic, plasmonic, and multiphysics simulations using CST STUDIO SUITE Dr Frank H Scharf, Principal Engineer CST of America Recorded: Jan 19 2017 60 mins
    Optical devices are key components in many areas, such as communications, remote sensing and medical applications, and their role will increase in the future. Simulations are already a very efficient way of optimizing a device, even before the prototype stage. However, simulating optical devices needs distinct consideration due to the special material models, such as graphene, or simply due to the size of the device in relation to the wavelengths of interest.

    CST STUDIO SUITE® offers a unique platform for handling such challenges. The user may import or build even highly complex structures using a user-friendly, interactive GUI. The photonic/plasmonic behaviour of the device can then be simulated by selecting the most appropriate algorithm (e.g. FIT/FDTD, FEM, BEM/MoM, MLFMM and more). Dispersive, anisotropic and nonlinear materials are supported. High-performance computing (HPC) options, such as MPI or GPU, are available, and the results can be displayed and analysed in the GUI using a comprehensive post-processing library and state-of-the-art visualization engine.

    In addition, CST STUDIO SUITE® includes multiphysics solvers linked to EM, allowing users to, for example, simulate the effect of thermal tuning.

    This webinar will demonstrate how CST STUDIO SUITE can be used to analyse a number of essential optical devices, such as silicon-on-insulator (SOI) waveguide components, photonic crystals (PC), plasmonic devices and optical gratings.
  • Exploring flatlands: characterizing 2D materials with atomic force microscopy Exploring flatlands: characterizing 2D materials with atomic force microscopy Prof. Andras Kis, EPFL, STI-IEL-LANES and Keith Jones, Oxford Instruments Asylum Research Recorded: Dec 13 2016 60 mins
    The atomic force microscope (AFM) has played an essential role in 2D materials research since it was used to confirm the first isolation of graphene. Today’s AFMs are even more powerful, with higher spatial resolution, faster imaging rates, greater environmental control and enhanced modes for mapping physical properties. They can image crystal lattice structure as well as nanoscale morphology, and sense local electrical, mechanical and functional response in more ways than ever before.

    In this webinar we explore the latest AFM tools that enable higher resolution, sensitivity and more quantitative results for analysing 2D materials. We’ll present results from measurements of a variety of 2D materials for device manufacturing, energy storage and optoelectronics including:
    • MoS2 and graphene;
    • measurements of mechanical properties;
    • kelvin probe imaging (KPFM) of operating transistors;
    • electromechanical measurements.

    We specifically detail AFM modes including:
    • conductive AFM;
    • KPFM;
    • piezoresponse imaging;
    • scanning microwave impedance imaging (sMIM).

    Finally, we discuss how AFM can now be used to accurately determine the thickness of single or multiple layers of a 2D material. This will challenge the misconception that AFM cannot be used to precisely measure the thickness of 2D materials.
  • From vision to sight: "See what you treat" From vision to sight: "See what you treat" Bas Raaymakers Professor of experimental clinical physics UMC Utrecht, The Netherlands Recorded: Dec 13 2016 48 mins
    In the third of our webinars showcasing presentations from the PMB 60th Anniversary Symposium, Bas Raaymakers examines the use of image guidance during radiation therapy. He will describe the various options available for radiotherapy guidance, including in-room CT-on-rails, MV imaging, fluoroscopy, ultrasound, tracking of implanted beacons and cone-beam CT. In particular, he will discuss the use of MRI for real-time visualization of the tumour and its surroundings during treatment.
  • Efficient ODE Set-up and Results Processing for Particle Trajectory Simulation Efficient ODE Set-up and Results Processing for Particle Trajectory Simulation Dr. Doug Craigen: Team Leader, Testing and Benchmarking, Integrated Engineering Software Recorded: Dec 6 2016 60 mins
    This webinar addresses practical computational issues in discrete calculations of the path of charged or multipole particles in electric and magnetic fields.

    We begin by showing the theory and an Excel macro implementation of some standard ODE time-based solvers as applied to the charged-particle case. We also discuss potential benefits of a nonstandard distance-based solver configuration.

    Next some examples are provided to illustrate trade-offs between the number of calculations and the accuracy of the result according to various criteria. For example, depending on one’s needs, the simulation set-up might produce output that is either a dense set of (x, y, z) points that plot as a smooth curve, or a much sparser set of points that are individually more accurate than the dense set.

    The webinar will end by examining what can be done with the data obtained. Calculations based on a linear interpolation between points are straightforward, but may force one to use an inefficient ODE set-up. This can take excessive computation resources, hence a longer time than necessary to produce accurate results. Some alternatives will be demonstrated using various degrees of physical insight to get the most information possible from the given ODE output data.
  • Celebrating 30 years of AFM and STM Celebrating 30 years of AFM and STM Franz Giessibl, Mervyn Miles, Sergei Kalinin, Igor Sokolov and Malgorzata Kopycinska-Müller Recorded: Nov 17 2016 60 mins
    To celebrate the 30th anniversary of the Nobel prize in scanning tunnelling microscopy (STM) and the 30th anniversary since the first paper in atomic force microscopy (AFM), Nanotechnology™ has been organising a focus collection with guest editors Franz Giessibl, Rodolfo Miranda and Johannes Barthes to collate some of the latest cutting-edge progress developing and exploiting these scanning probe techniques.

    In this webinar, we invite one of the guest editors of the collection, members of our editorial board and authors of contributions in the collection itself to join our panel to look at some of the highlights in STM and AFM over the past 30 years and some of the most exciting research developments in the field today.
  • Correlative 3D Raman Imaging: Advancing Semiconductors & Energy Storage Devices Correlative 3D Raman Imaging: Advancing Semiconductors & Energy Storage Devices Dr Thomas Dieing: Director Applications and Support Recorded: Nov 15 2016 59 mins
    This webinar aims to highlight the benefits of correlative Raman imaging for the analysis of chemical composition, crystallinity, stress and optoelectronic properties of materials such as semiconductors, 2D materials and electrodes. Used in combination with either atomic force microscopy or scanning electron microscopy, Raman correlative microscopy provides deep insight into the relation between molecular and structural features of materials – even in 3D.
    The principles of state-of-the-art confocal Raman imaging will first be introduced, then its power as an ideal tool for investigating the chemical and molecular characteristics of a sample will be demonstrated with examples of 2D materials, semiconductors and battery electrodes. The webinar will describe clearly the advantages and ease- of- use offered by Raman imaging systems integrated with other microscopy technologies.
  • Generate, filter, select: How Plan Explorer redefines automatic planning Generate, filter, select: How Plan Explorer redefines automatic planning Freddie Cardel: Director of Service RaySearch Americas, Erik Korevaar and Roel Kierkels: University Medical Center Groningen Recorded: Nov 9 2016 52 mins
    How automatic is your automation?

    In part one of this webinar, Freddie Cardel outlines the concept of automatic plan generation with Plan Explorer and demonstrates a completely new level of automation. He explains the approach, where large numbers of high-quality treatment plans are automatically generated for defined clinical goals and combinations of treatment techniques and machines, and shows how these plans can be easily filtered and browsed to find the most suitable candidates to be evaluated.

    In part two, Erik Korevaar and Roel Kierkels present the first findings of the clinical evaluation they performed at University Medical Center Groningen, the Netherlands, and describe how the center envisions the use of the tool in clinical practice.
  • Diagnostic Imaging Evolution: discoveries in contrast mechanisms and resolution Diagnostic Imaging Evolution: discoveries in contrast mechanisms and resolution Brian Pogue, Professor of Physics & Astronomy, Dartmouth College Hanover, NH, USA Recorded: Nov 3 2016 41 mins
    Continuing our series of webinars showcasing presentations from the PMB 60th Anniversary Symposium, Brian Pogue discusses the evolution of diagnostic imaging over the last 60 years. He will present examples of successful medical imaging technologies, explain how the use of contrast agents can improve delineation and function assessment, and present some fundamentally new physical imaging systems.
  • IOP ebooks - meet the authors Sam Illingworth and Grant Allen IOP ebooks - meet the authors Sam Illingworth and Grant Allen Sam Illingworth and Grant Allen Recorded: Nov 2 2016 45 mins
    If you're publishing scientific work, applying for grants, or just want to better convey your research to a wider audience you need to join us for this special webinar with authors Sam Illingworth and Grant Allen on their book Effective Science Communication: A practical guide to surviving as a scientist.

    Sam and Grant will talk us through the research behind their book, why they feel there is a need for this, and provide advice on not only how to survive, but to prosper in the process.

    There will be a live Q&A session at the end of the webinar.
  • Heat Transfer in Solids and Fluids with COMSOL Multiphysics® Heat Transfer in Solids and Fluids with COMSOL Multiphysics® Dr Robbie Balcombe Recorded: Oct 19 2016 59 mins
    Thermal characteristics must be considered in product development, for example, in systems that include temperature control combining conduction in solids and convection in fluids. In this webinar, we will explore heat transfer between solids and fluids. We will show examples that include structural thermal expansion; convection, radiation and conduction; and electromagnetic heating. A live demo will demonstrate modelling heat transfer in COMSOL Multiphysics® and creating a customized user interface, or application, based on the model. The webinar will include a Q&A session.

Embed in website or blog