
Architected for Performance

®

NVM Express® in the Linux Stack

May 12, 2016, 11 AM Pacific Time

Presenters: Keith Busch, Intel and Matias Bjørling, CNEX Labs

Moderator: Stephen Bates, Microsemi

2 ®

Some Logistics

• This webinar is being recorded and will be available on the BrightTalk site after the
event. The slides will be available on the same site as a PDF after this talk.

• Feel free to ask questions via the question submission tool. We will respond to the
best of them in the discussion session at the end of the talk.

• We have provided some further reading links at the end of this deck. If you want to
learn more, feel free to dig into those.

3 ®

Outline

• Introduction – Stephen

• The NVM Express Driver and Tools – Keith

• The Linux Block Layer – Matias

• Conclusions – Stephen

• Q & A Session

4 ®

Fun “NVMe in Linux” Facts!

Over 500 git commits to NVMe
driver since added in January
2011

First commit added by
Matt Wilcox of Intel

Rate of commits is
increasing as support for
NVMe grows

59 contributors
from over 20
different
organizations

Architected for Performance

®

NVM Express® Linux Overview

Keith Busch – Intel

6 ®

NVMe Driver: High Level Implementation

 Bio-based for performance: lockless block
layer

 Driver burdened to manage common
boilerplate block driver issues:

 Timeouts, command tag management, queue
selection, IO splitting, DMA mapping, trace
points, IO statistics

 Does not stack with the request-based
device mappers (dm-multipath)

7 ®

Per-CPU H/W Queues

8 ®

Storage Stack Comparison

 Submission latency and CPU cycles reduced >50%*:

 NVMe: 2.8us, 9,100 cycles

 SAS: 6.0us, 19,500 cycles

* Measurement taken on Intel® Core™ i5-2500K 3.3GHz 6MB L3 Cache Quad-Core Desktop Processor using Linux kernel 3.12

9 ®

Getting 1M IOPs: SATA

 Resource intensive: software and
transport protocol overhead

10 ®

Getting 1M IOPs: NVMe

 More efficient h/w utilization
scales IOPs!

11 ®

Hot Plug

 Most frequently broken

feature during merges

 Dependencies on platform,
pci kernel subsystem, and
pciehp module.

 Surprise hot removal mostly
working as of 3.16 with
inflight IO

 Simultaneous hot-plug
events still not handled well

12 ®

Device Management: IOCTL

 Special character device handle created for
each controller

 Accepts various IOCTLs for management:

 Admin and IO Command Passthrough

 STOP USING SG_IO!

 Namespace Identification

 Controller Reset

 Subsystem Reset

13 ®

Device Management: sysfs
 NVMe provides its own class for controllers

 /sys/class/nvme/

 Individual controller handles (nvme<#>/) provide device information and control

 Model, F/W revision, Serial, Controller ID

 Controller reset

 Child links to each Namespace block handle include namespace identification

 NGUID, EUI-64, or driver constructed unique identifier accessible through “wwid”

 Child link to PCI device for access to PCIe resources

 SR=IOV, PCI capabilities, topology information

14 ®

Open Source Tooling: nvme-cli

 General purpose NVMe tool for Linux, available on github

 Utilizes the IOCTL interface for submitted arbitrary admin and io commands

 Provides options and structure decoding for human readability for all NVMe
commands and structures defined in 1.2 specification

 Can map controller register set for debugging

Architected for Performance

®

Multi-Queue Block Layer Integration

Matias Bjørling – CNEX Labs

16 ®

Storage Evolution

I/Os Per Second

Access Latencies

2009 - 2015

Storage devices are getting faster and faster
and processors scale with additional cores

17 ®

Block Storage Stack

• Applications

• File Systems (Ext4, btrfs, XFS, ...)

• Block Layer

• Device drivers (SCSI/ATA)

• Hardware communication (NCQ/TCQ,
Interrupt-driven, ...)

• All Layers assume to some degree

• Fast sequential access

• Slow random access

18 ®

Single-Queue Block Layer Architecture

Common library for block storage device drivers and
entry point for applications

• I/O Scheduling

• I/O Merging and Reordering

• I/O Accounting and Statistics

• Single request queue

 Single lock, single device dispatch queue

 Cache-coherence is expensive

• Does not take advantage of multi-core systems to
scale performance

19 ®

Performance of Single-Queue Block Layer

Null block device (nullblk), 512B random reads, 64 queue depth
System: 2x Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

M
ill

io
n

s
IO

P
S

Core(s) issuing I/Os

Single-Queue IOPS

20 ®

Multi-Queue Block Layer Architecture

• Balance I/O workload accross cores

• Reduce cacheline sharing (per-core queues)

• Maintain functionality to existing block layer

• Queue mgmt., timeouts, bio splits,
accounting, staging

• Implement multiple hardware queues

• Scalable command tagging

• Per-core command tag pool

• Merged in Linux Kernel 3.13

21 ®

Multi-Queue Block Layer Performance Throughput

• Single-Queue Block Layer

• =< 1M IOPS

• Low throughput with multiple sockets

• Increasing Latency

• Multi-Queue Block Layer

• >6M IOPS

• Scales with cores

• Improved Submission and Completion
latency

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11 12

M
ill

io
n

s
IO

P
S

IOPS

Single-Queue IOPS Multi-Queue IOPS

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12

La
te

n
cy

 (
u

s)

Core(s) issuing I/Os

Latency

Single-Queue Latency Multi-Queue Latency

22 ®

NVMe with the Multi-Queue Block Layer

Greatly simplifies storage stack and improves performance with both latency and
throughput. Block Layer now handles:

• Scalable per-command data tagging

• Timeout logic

• Improved queue suspension logic

• Removal of RCU usage for unsuspected unplugging

• Assignment of NVMe submission and completion queues

Merged in Linux kernel 3.19

23 ®

New Features

• I/O Polling

• Synchronous data access without context switch

• LightNVM -- Open-Channel SSDs

• Physical Page Addressing

• Streams

• Patches available

• NVMe over Fabrics

• NVMe driver being factored for support

*Yang et. al. When Poll is Better than Interrupt, FAST 2012

Architected for Performance

®

Conclusions

Stephen Bates – Microsemi

25 ®

Conclusions

• NVM Express and blk-mq play well together to enable very high-throughput/low
latency NVM storage devices within Linux

• Tons of code and tools there to help you tune performance, debug errors, withstand
failure events

• The Linux kernel is a living thing. Get involved, track the codebase, help make things
better!

• Some very exciting things coming down the pipe:

• Polling completions for lower latency (not-NAND SSDs ;-))

• NVMe over Fabrics for NVMe with distance and scale

26 ®

Further Reading

• "Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems" –
http://kernel.dk/blk-mq.pdf

• The Linux Kernel Source Code – https://www.kernel.org/

• Block-Layer IO Polling – https://lwn.net/Articles/663879/

• NVM Express Standard – http://www.nvmexpress.org/specifications/

• Contributing code to the Linux Kernel –
https://www.kernel.org/doc/Documentation/development-process/1.Intro

• nvme-cli source – https://github.com/linux-nvme/nvme-cli

http://kernel.dk/blk-mq.pdf
http://kernel.dk/blk-mq.pdf
http://kernel.dk/blk-mq.pdf
http://kernel.dk/blk-mq.pdf
http://kernel.dk/blk-mq.pdf
https://www.kernel.org/
https://www.kernel.org/
https://lwn.net/Articles/663879/
https://lwn.net/Articles/663879/
http://www.nvmexpress.org/specifications/
http://www.nvmexpress.org/specifications/
https://www.kernel.org/doc/Documentation/development-process/1.Intro
https://www.kernel.org/doc/Documentation/development-process/1.Intro
https://www.kernel.org/doc/Documentation/development-process/1.Intro
https://www.kernel.org/doc/Documentation/development-process/1.Intro
https://github.com/linux-nvme/nvme-cli
https://github.com/linux-nvme/nvme-cli
https://github.com/linux-nvme/nvme-cli
https://github.com/linux-nvme/nvme-cli
https://github.com/linux-nvme/nvme-cli
https://github.com/linux-nvme/nvme-cli

27 ®

Thank you for attending our NVM Express® webcast!

Some resources for additional information:

• View NVM Express® webcasts in our BrightTalk channel –
https://www.brighttalk.com/channel/12367/nvm-express

• Follow NVM Express, Inc. on Twitter @nvmexpress –
https://twitter.com/NVMexpress

• Visit us on LinkedIn – https://www.linkedin.com/groups/4307826

• Find us on the web at http://www.nvmexpress.org

https://www.brighttalk.com/channel/12367/nvm-express
https://www.brighttalk.com/channel/12367/nvm-express
https://www.brighttalk.com/channel/12367/nvm-express
https://www.brighttalk.com/channel/12367/nvm-express
https://twitter.com/NVMexpress
https://twitter.com/NVMexpress
https://www.linkedin.com/groups/4307826
https://www.linkedin.com/groups/4307826
http://www.nvmexpress.org/

Architected for Performance

®

