

Optimizing vRAN with Intel® FPGA Platform

Silicom Product Line

- Silicom overview
- Silicom Open RAN offerings
- N6010/N6011 Introduction
- Silicom Time Synchronization

A public company NASDAQ(SILC)

HQ, R&D and manufacturing facilities are in Israel, with offices in the US, Denmark and China

>300 employees

33 years of experience in networking and connectivity

Collaboration with Strategic partners

Over 300 clients worldwide

Intel[®] Network Builders Winners' Circle Gold Silicom tat. Intel Intel SOC and FPGA Design House

FPGA design experts both HW and IP cores

TIP, ORAN, OCP

Rapid Innovation (Process)

4 | Silicom Ltd.

Silicom Products Overview for Mobile Infrastructure

Silicom Madrid and Cordoba – ATOM platform with LTE and 5G uplink for Fixed Wireless Access

Silicom Barcelona – 1U Xeon platform including Time Sync and FEC acceleration

Silicom Vigo – 2U Xeon platform including Ethernet Switch

Silicom Palma - 2U Xeon platform including Time Sync and FEC acceleration

Silicom STS - Ethernet NIC with Time Sync technology

Silicom N6010 - SmartNIC (FPGA) with Silicom Time Sync technology

Silicom Lisbon – 4G/5G FEC acceleration

Silicom N5014 – 5G Core UPF acceleration based on FPGA technology

5 | Silicom Ltd.

Open RAN Market Today

6 | Silicom Ltd.

Scaling – Software vs Hardware acceleration

Connectivity Solutions

7 | Silicom Ltd.

Silicom Disaggregated 4G/5G Solutions – from Edge to Cloud

Silicom FPGA SmartNIC N6010/N6011

SmartNIC For NFVi, VNF, vRAN, OpenRAN

High performance networking acceleration card Programmable through Intel[®] DPDK and OPAE Accelerated Workloads

- Intel Open FPGA Stack (OFS)
- Support for vRouter, OVS, SRv6, UPF, vFW acceleration
- 4G and 5G vRAN enablement package, DPDK/BBDev and FlexRAN

Built with Intel® AgileX AGF014 FPGA

- High speed Ethernet support : 100G, 25G, and 10G
- Supports SyncE, CPRI, eCPRI
- PCle Gen 4 x16(N6010) 2 x8(N6011)
- 16GB DDR4 memory, 1GB DDR4 to HPS
- BMC for monitoring and control (PLDM)
- Front panel SMAs for IEEE1588 1pps and master clocking
- O-RAN LLS-C1, -C2, -C3 support
- Full Height, ½ Length, PCIe card
- Optimized for 75W-100W TDP

Supports Intel[®] Ethernet Controller E810

- Extensive OS support and easier system integration
- Dual 100Gbps pipeline

Arrow Creek SKU

- Silicom FPGA SmartNIC N6010 (base)
- Silicom FPGA SmartNIC N6011 (base + Intel NIC)
- 9 | Silicom Ltd.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.

Base Hard NIC

Connectivity Solutions

10 | Silicom Ltd.

Intel Agilex Architecture

High Bandwidth Memory option

Intel Agilex F014 Specification

Table 3. Intel Agilex F-Se	ries FPGAs and SoCs Family Plan Part-1
----------------------------	--

Intel Agilex F- Series Device Names	Logic Elements (LE)	eSRAM Blocks	eSRAM Mbits	M20K Blocks	M20K Mbits	MLAB Counts	MLAB Mbits	Variable Precision DSP Blocks	18x19 Multipliers
AGF 006	573,480	0	0	2,844	56	9,720	6	1,640	3280
AGF 008	764,640	0	0	3,792	74	12,960	8	2,296	4592
AGF 012	1,178,525	2	36	5 <mark>,</mark> 900	115	19,975	12	3,743	7486
AGF 014	1,437,240	2	36	7,110	139	24,360	15	4,510	9020
AGF 022	2,208,075	0	0	10,900	212	37,425	23	6,250	12500
AGF 027	2,692,760	0	0	13,272	259	45,640	28	8,528	17056

Intel Agilex FPGA Block Diagram

12 | Silicom Ltd.

Intel[®] Ethernet Controller E810

Performance for Cloud Applications

Delivers the bandwidth and increased application throughput required for demanding cloud workloads including edge services, web servers, database applications, caching servers, and storage targets.

Optimizations for Communications Workloads

Provides packet classification and sorting optimizations for high-bandwidth network and communications workloads. including mobile core, 5G RAN, and network appliances.

Supports Hyperconverged Solutions

The 800 Series broad portfolio of adapters, with different port counts and form factors, delivers performance with efficient use of server processors.

Flexible port and speed combinations

EPCT, available on 100GbE 800 Series Network Adapters¹, offers a versatile solution for high-density, port-constrained network environments. One port becomes eight 10GbE ports, four 25GbE ports, and more-up to six configurations to choose from.

OFS – Open FPGA Stack

Intel® OFS for Custom Platform Development

Silicom OFS Offerings

A scalable hardware and software infrastructure that includes:

Hardware

- Acceleration Functional Unit (AFU) Region for Workload Development with Sample AFUs
- FPGA Interface Manager (FIM)
- Board Management Controller (BMC)
- HLD enablement

Software

- Upstreamed, open-source kernel drivers
- OPAE libraries, tools and APIs
- Example Applications

UVM Test Environment

• Verification environment provided through Git repositories

Intel[®] OFS System Architecture

Software

- Upstreamed OS kernel support
- Runtime & drivers
- Libraries & application software
- Virtualization
- Simulation

Hardware

- Modular, composable FPGA Interface Managers (FIMs)
- Provides interfaces between board resources (PCIe, memory, networking, etc.) and acceleration function unit (FH, MH, BH, FEC, etc.)
- Supports partial reconfiguration

Block Diagram

vRAN Acceleration

How N6010/N6011 improves TCO, CAPEX and OPEX

vCSR

Optimised Edge site integration in non standalone 5G deployments.

- Legacy 4G requires cPRI to eCPRI conversion (FHGW)
- FHGW + CSR for routing integration and F2 aggregation toward vDU

Use Case: 5G vRAN

Silicom FPGA SmartNIC N6010/1 Platform with 5G vRAN workload (FEC + xHaul); single PCIe Gen4 x16 slot:

- Fronthaul I/F: 8x10GE, 2x2x25GEs, 2x100GEs, Split 7-2x or Split8, O-RAN C3, C2 and C1 Timing Configuration (1588 GM/BC, target <10ns accuracy), CPRI support, SyncE
- 2. FEC processing: LDPC Gen 3.0 (URLLC support) encoder and decoder, Rate Match, De-Rate Match, HARQ, CRC, TB-CB conversion

3rd Gen Intel® Xeon® Scalable Processor

 L1 and L2rt functions in software (Intel FlexRAN reference stack or customer's own)

O-RAN Fronthaul I/F

(split 7-2x or split 8)

Connect RUs

vRAN use case example*:

- 3-6 cells 64T64R 100MHz, TDD, MidBand, mMIMO
- DRAN, CRAN, Private RAN

N6011:

5G vDU use case (L1 + L2rt) high level abstraction Not all functions listed, different L1 splits may apply

22 | Silicom Ltd.

* Performance varies depending on traffic model definition. See Performance Estimates slide in Appendix Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Silicom Ltd. Connectivity Solutions

Layer 1 High Phy Offload IP

O-RAN 7.2x Split Description between O-DU and O-RU

23 | Silicom Ltd.

STS – Silicom Time Synchronization IP

What problem we come to solve?

- O-RAN Low Level Split C1 and C2 requires
 DU to support PTP and SyncE.
- DU need to support PTP/1588 and SyncE
- In some config DU needs to be GM
- Target ORAN LLS-C1 and C2

Technoloav

What problem we come to solve?

- LLS-C3 using a switch with PRTC/GM and SyncE
 - Problem: high-cost switch that effect both CAPEX and OPEX.
- LLS-C4 no PTP/SyncE support
 - Problem: cannot meet the requirements needed to

local or remote

PRTC-traceable

support URLL and mMIMO.

Time Synchronization Standards of STS

- 1588/PTP over IPv4 / IPV6, IEEE1588v2
- SyncE /ITU-T G.8262
- T-BC/T-TSC Boundary Clock and TSC Slave Clock /G.8273.2
- T-GM Grand Master /G.8273.1 per G.8275.1 PTP Profile
- PRTC Primary Reference Time Clock Class B/G.8272
- OC Own Clock(Master / Slave) Class C(Stratum 3e)
- BMCA Best Master Clock Algorithm
- 1.5usec TIE at <4 Hours Hold Over
- Software 1588 Stack and Servo SW in x86/ARM

echnoloa

Connectivity Solutions

Nadav Yafe, VP Product nadavy@silicom.co.il

Oren Benisty, VP Sales orenb@silicom.co.il

THANK YOU

www.silicom-usa.com