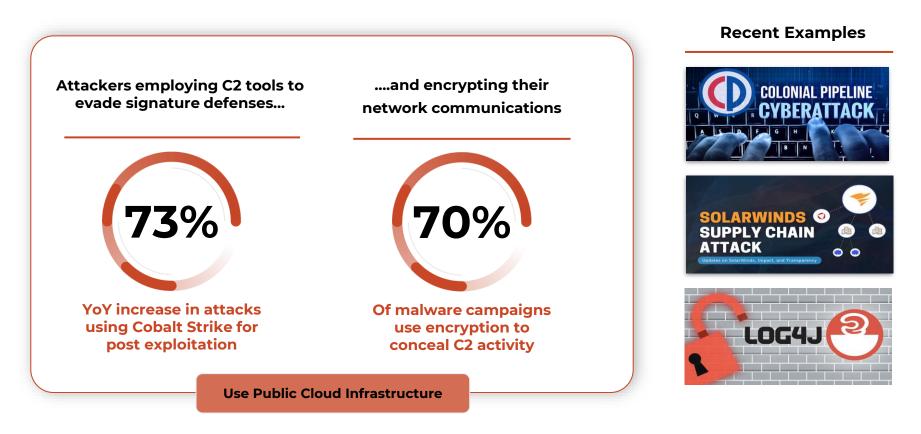

Next-Gen Security Services with Inline AI Inference Powered by Intel[®] Xeon[®] Processor in the Cloud

Suiqiang Deng, Distinguished Engineer & Architect, Palo Alto Networks

David Lu, Platform Solution Architect, Intel


Palo Alto Networks recently introduced 'Inline Deep Learning'

Stops Evasive Threats. Inline.

🎶 paloalto

Stopping Today's C2 Attacks Harder than Ever

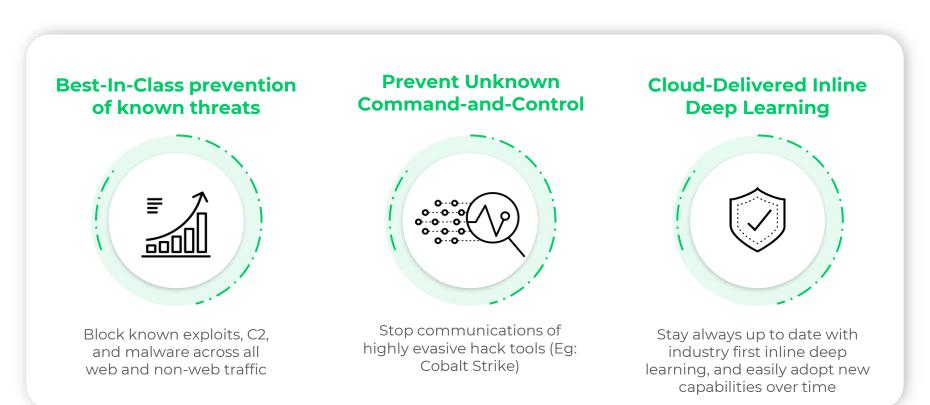
IPS is foundational for Network Security... But only to prevent known threats

Signatures prevent known threats

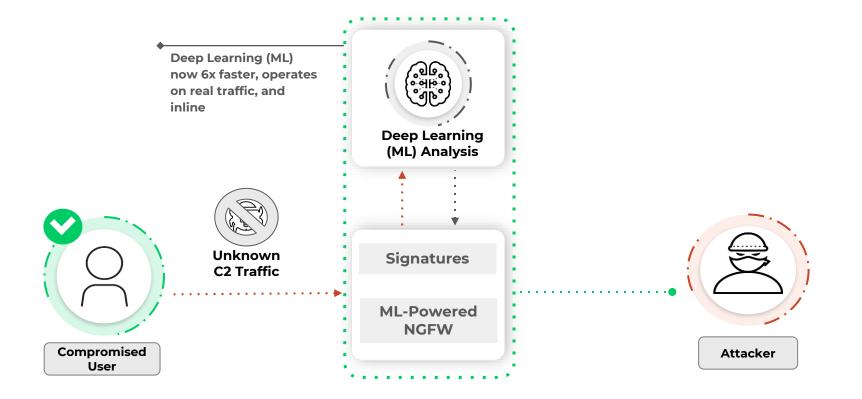
Traditional approaches struggle to keep pace with the changing threat landscape

Cannot prevent the unknown

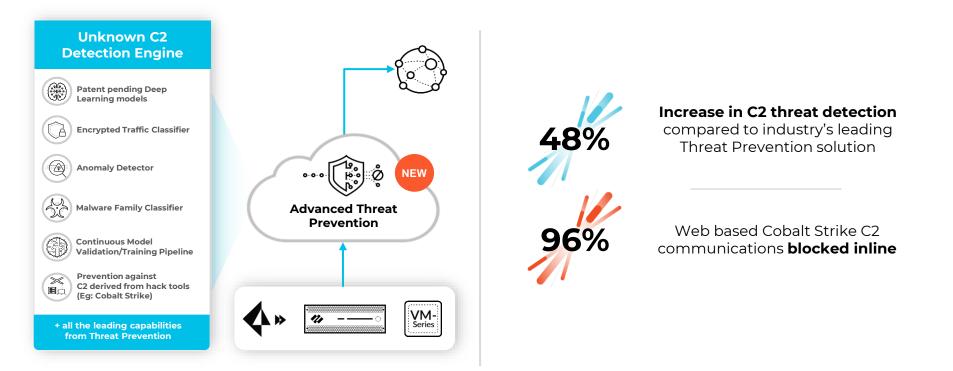
Malware communications must be observed first in the wild before protections can be released


Evasive Command and Control on the rise

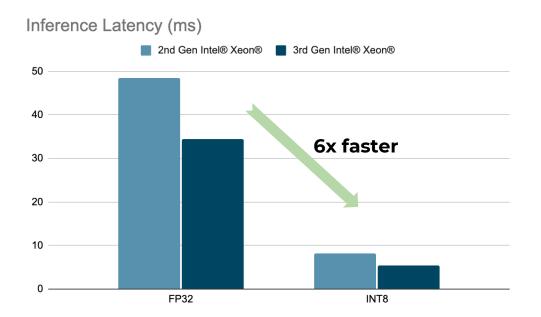
Threat actors are leveraging highly customizable tooling to evade traditional technologies



New Advanced Threat Prevention - Industry's first IPS to stop unknown C2



Advanced Threat Prevention: Utilize Inline Deep Learning for Prevention


Stop 48% More Unknown C2

Supported on PAN-OS 10.2 (Nebula)

Results for AI inference latency improvement:

- Tests were done on GCP N2 instances with 8-VCPU 2nd Gen Intel Xeon or 3rd Gen Intel Xeon CPU
- INT8 model is ~6x faster than original SavedModel
- 3rd Gen Intel Xeon is ~30% faster than 2nd Gen Intel Xeon

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.

Intel Network AI Optimization

Notices and Disclaimers

- Intel technologies may require enabled hardware, software or service activation.
- No product or component can be absolutely secure.
- Your costs and results may vary.
- © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Intel® Network AI Offering

Network Al

One Intel AI foundation

	Data	< Develop	💩 Deploy
of possibilities & next steps	setup, ingestion & cleaning	models using analytics/Al	into production & iterate
Simplify Network Al Deployment with Domain Expert Support (Use-case Ref.)	1. Design Use-case solution 2. Build AI models per use case		
	3. Optimize Al performa	nce 4. E2E NW &	Al Solution Deployment
Optimized Libraries, Frameworks, Tools	Developer Tools		ntel® Neural Traffic Analytics compressor Development Kit (TADK)
	Standard Frameworks	nsorFlow 🕼 ONNX 🛛 🖸	PyTorch 🗨 🛃 LightGBM
	Optimized Libraries • Intel® oneAPI Data Analytics Library (oneDAL) • Intel® oneAPI Deep Neural Network Library (oneDNN) • Intel® oneAPI Collective Communications Library (oneCCL)		
End-to-End Al Portfolio Roadmap	Max Optimization on	Intel. intel XEON ATOM AGILE	Accelerate with Purpose
	Intel® Deep Learning Boost (Intel® DL Boost), Intel® SSE4.1, Intel® Advanced Vector Extensions 512 (Intel® AVX-512), Intel® Advanced Matrix Extensions (Intel® AMX)		

Webinar: Next-Gen Security Services with Inline AI Inference Powered by Intel® Xeon® Processor in the Cloud

11

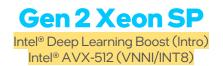
Intel® Xeon® Scalable Processors

DATA CENTER CPU OPTIMIZED FOR AI

INTEL® ADVANCED VECTOR EXTENSIONS 512 (INTEL® AVX-512) INTEL® DEEP LEARNING BOOST (INTEL® DL BOOST) INTEL® OPTANE™ DC PERSISTENT MEMORY

Intel [®] DL Boost Technologies				
Microarchitecture	AVX512_VNNI	AVX512_BF16	AMX	
Client				
Core 10 th Gen	\checkmark	Х	Х	
Server				
Xeon SP Gen 2	\checkmark	X	Х	
Xeon SP Gen 3H	\checkmark	\checkmark	Х	
Xeon SP Gen 3	\checkmark	Х	Х	
Next Gen Xeon SP	\checkmark	\checkmark	\checkmark	
		000		

2022


Next Gen Xeon SP

Intel[®] AMX – INT8 and BFloat16 support

Intel® AVX-512 (VNNI/INT8)

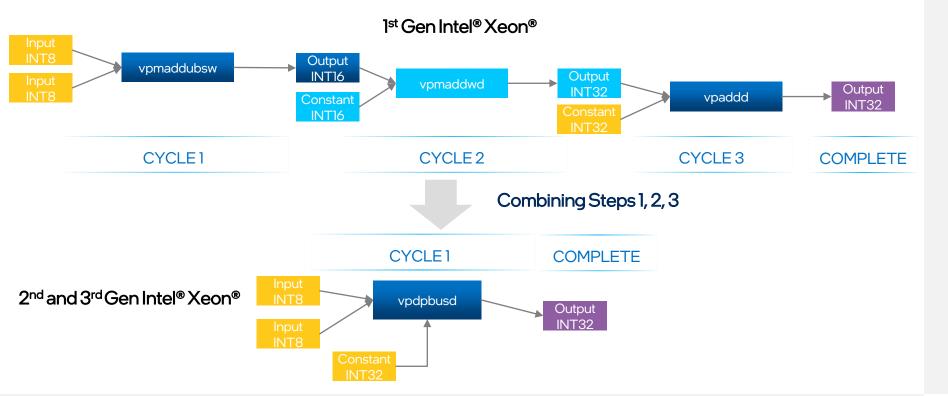
2020 Gen 3H Xeon SP

> Intel[®] Deep Learning Boost Intel[®] AVX-512 (VNNI/INT8 & BFloat16)

2019

Gen 3 Xeon SP

2021


Intel[®] Deep Learning Boost Intel[®] AVX-512 (VNNI/INT8)

LEADERSHIP PERFORMANCE

Webinar: Next-Gen Security Services with Inline AI Inference Powered by Intel® Xeon® Processor in the Cloud

Intel[®] Deep Learning Boost

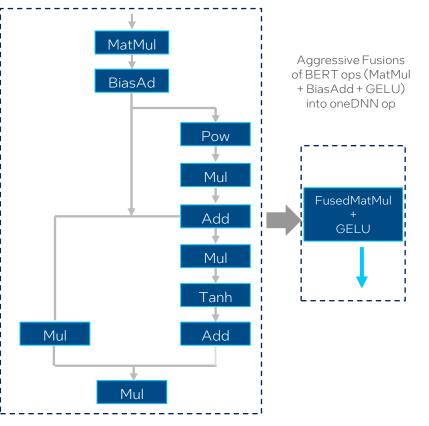
A Vector Neural Network Instruction (VNNI) Extends Intel® AVX-512 to accelerate AI/DL Inference

Webinar: Next-Gen Security Services with Inline AI Inference Powered by Intel® Xeon® Processor in the Cloud

Intel[®] oneAPI Deep Neural Network Library (oneDNN)

Features

- Supports FP32, FP16, Bfloat16, and int8.
- Leverages Intel[®] DL Boost, Intel[®] AVX-512 instructions, and processor capabilities
- Fused operations for optimized performance

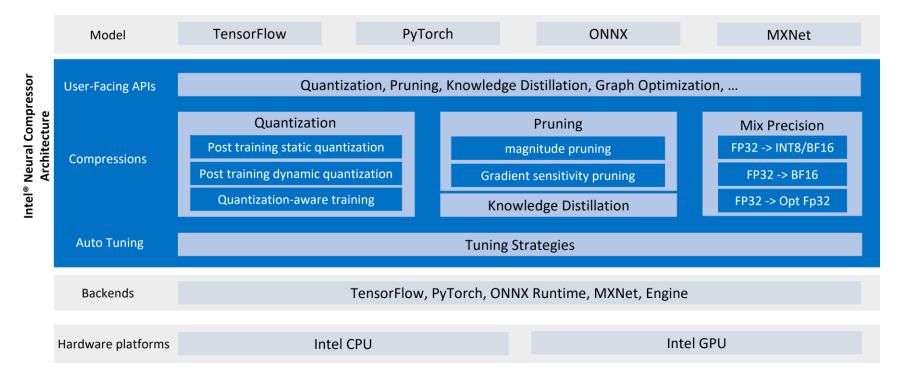

Support Matrix

- Compilers: Intel[®] oneAPI DPC++ / C++ Compilers
- OS: Linux, Windows, macOS
- CPU: Intel Atom[®], Intel[®] Core[™], Intel[®] Xeon[®], Intel[®] Xeon[®]
 Scalable processors
- GPU: Intel[®] Processor Graphics Gen9, Intel[®] Processor Graphics Gen 12

Category	Functions
Compute intensive operations	 (De-)Convolution Inner Product RNN (Vanilla, LSTM, GRU) GEMM
Memory bandwidth limited operations	 Pooling Batch Normalization Local Response Normalization Layer Normalization Elementwise Binary elementwise Softmax Sum Concat Shuffle
Data manipulation	Reorder

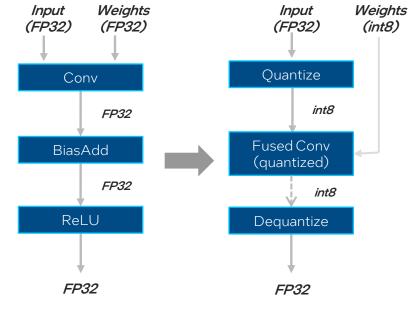
Intel® oneDNN Integration with TensorFlow

- Replaces compute-intensive standard TF ops with highly optimized custom oneDNN ops
- Aggressive op fusions to improve performance of Convolutions and Matrix Multiplications
- Primitive caching to reduce the overhead of calling oneDNN
- Turn on oneDNN optimizations at runtime in official TensorFlow distributions by setting an environment variable TF_ENABLE_ONEDNN_OPTS=1


https://github.com/tensorflow/community/pull/400

https://medium.com/intel-analytics-software/leverage-intel-deep-learning-optimizations-in-tensorflow-129faa80ee07

Webinar: Next-Gen Security Services with Inline AI Inference Powered by Intel® Xeon® Processor in the Cloud


Intel® Neural Compressor Infrastructure

Opensource Tool for Quantization (https://github.com/intel/neural-compressor)

Low Precision (8-bit Integer) Inference Optimization

- Quantized models using 8-bit integers gaining adoption
 - Improved performance
 - Trade off accuracy for performance
- Intel[®] Neural Compressor*
 - Automatically quantizes pre-trained model
 - Additional post-training quantization steps needed
 - Picks quantization scheme to meet specific performance and accuracy needs
- Accelerated by Intel[®] DL Boost instructions or Intel[®] AMX

Quantization Process

*Formerly Low Precision Optimization Tool (LPOT)

Examples: Quantize TensorFlow RN50

#RN50.yaml

model: name: resnet50 framework: tensorflow

quantization:

calibration:

dataloader:

dataset:

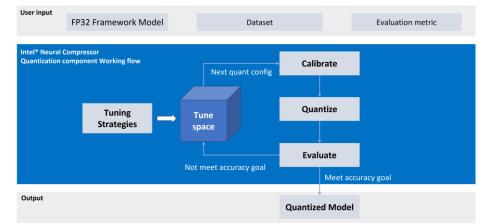
ImageRecord:

root: /path/to/calibration/dataset

transform:

ResizeCropImagenet: height: 224

width: 224


mean_value: [123.68, 116.78, 103.94]

evaluation:

accuracy:

metric:

topk: 1

#tune.py

from neural_compressor.experimental import Quantization, common

quantize = Quantization('./RN50.yaml')
quantize.model = common.Model(self.args.input_graph)
q_model = quantize()
q_model.save(output_model_path)

Blog on using ML to detect C2 traffic: <u>https://unit42.paloaltonetworks.com/c2-traffic/</u>

How to improve the performance with Intel® oneDNN and Intel® Neural Compressor under TensorFlow: <u>https://networkbuilders.intel.com/solutionslibrary/intel-deep-learning-boost-boost-network-security-ai-inference-performance-in-google-cloud-platform-gcp-technology-guide</u>

AI Technologies – Unleash AI Innovation in Network Applications: <u>https://networkbuilders.intel.com/solutionslibrary/ai-technologies-unleash-ai-innovation-in-network-applications-solution-brief</u>

Thank you

paloaltonetworks.com