Innovating at the Edge Meetups

Edge Big Bang

• Francesc Guim, Chief of Edge Architecture, Intel

Notices and Disclaimers

- Intel technologies may require enabled hardware, software or service activation.
- No product or component can be absolutely secure.
- Your costs and results may vary.
- © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

POCs On-Premise or Controlled env. 10/100s Edges per deployment Production deployments Far Edge, Near Edge, Data Center Edge, Cloud Up to 100K Edges per deployment Challenges: Temperature, Energy, Reliability and security @ scale

2023

2016

Meetup: Edge Big Bang

Outline

Outline

Challenge 1: Vertical View of Edge

<u>Challenges</u>: CSPs/CoSPs have multiple edge verticals (IOT, Enterprise, Telco) with differing architectures. How do we drive a scalable & converged architecture? Challenge 2: Edge is Distributed, has Life and Requires Scales

7

Challenge 3: Amount of Technology Building Blocks

	Al for Imaging	Content Dist	ribution	VNFs	NLP	KVS	AR/VR
Service Orchestration	K8s/K3 based Local/Mu	lti-Edge Orchestrator	ud/edge	Cloud Service Based Orchestration			
SW Cloud Service Provides Solutions	AWS (outpost, sage maker) Azure (ARC, stack edge, HCI) Google (functions,)						
VIM	KVM	Open	Stack	ACRN	Containeri	zation tech (VM or bar	re metal)
Infrastructure	Infrastructure Tele	metry				SD-W	/AN
Network Infra	NIC Smar	NIC/IPU E	Ethernet Switch	CXL switching	NZ	ZTP	iPXE
Frameworks	EdgeX Open\	/INO™ Intel [®]	[®] Smart Edge	Edge Insights	for Industrial	Edge Cont	rol Stack
Managed Network	CUPS vEPC User Plane (1	PGW-U/SGW-U)	CLIPS VEPC Control PI	ang (MME / HSS / S	GW-C/PGW-C)	5G EWA – Fixed	Wireless Access
Services	Full vEPC (MME / H	SS/PGW/SGW)	vBNG	FMC – AGF - FMI	IF Etherr	net/MPLS	vRAN
Access	Full vEPC (MME / H LTE / 5GNR (ORAN/FlexRan)	SS/PGW/SGW) Fiber W	vBNG	FMC – AGF - FMI LoRA	IF Ethernet	net / MPLS	vRAN
Access Form Factors	Full vEPC (MME / H LTE / 5GNR (ORAN/FlexRan) Smart Camera No (VPU) Coo	SS / PGW / SGW) Fiber W AC AC/Liquid Ling Cooling	vBNG iFi / Industrial WiFi Industrial Fanless	FMC – AGF - FMI LoRA Al Appliance	IF Ethernet Edge Servers	ed / MPLS IIoT pr Edge DC Servers	vRAN rotocols Data center Servers
Services Access Form Factors SW Platform	Full vEPC (MME / H LTE / 5GNR (ORAN/FlexRan) Smart Camera No (VPU) Coo Security (IsecL)	SS / PGW / SGW) Fiber W AC AC Ing AC/Liquid Cooling Qua	vBNG iFi / Industrial WiFi Industrial Fanless ality of Service	FMC – AGF - FMI LoRA Al Appliance Acceleration	IF Ethernet Edge Servers Manageme	ent Te	vRAN rotocols Data center Servers
Services Access Form Factors SW Platform xPUs	Full vEPC (MME / H LTE / 5GNR (ORAN/FlexRan) Smart Camera No. (VPU) Coo Security (IsecL) GPU Al Accelera	SS / PGW / SGW) Fiber W AC AC AC/Liquid Cooling Qua ators FPGA(s)	vBNG iFi / Industrial WiFi Industrial Fanless ality of Service Low power CPU(Atom	n) Client CPU (IF Ethernet Edge Servers Manageme (i3, i5, i7) IPU	ent Te Xeon D Xeon	vRAN rotocols Data center Servers elemetry E Xeon SP

How Do We Architect Edge To Cloud?

- At scale
- With security
- With an optimized total cost of ownership
- With compute democratization
- Satisfying edge use cases requirements
- Being sustainable and scalable at the long run

Outline

Common Framework to Address Different Verticals

EDGE END TO END ARCHITECTURAL FOUNDATION: INTER-OPERABLE, OPEN & SELF MANAGED

END USERS & DEVICE LOCATION + TRANSPORT TYPE

MULTI-SERVICE (NFV & non-NFV) COMMON SERVICE									
NFV	Internet of Things	Autonomous	AR/VR & Gaming	Data caching & Storage GW					
Flexible NFV De-Centralized Ran vEPC, UPF Resources: CPUs, storage, FPGAs , <u>pNIC/sNIC</u> Latency: To be analyzed	IoT devices in many fields such as factory automation, process automation, smart grids, V2V Resources: Communication, CPUs, storage, Movidius, SPH Latency: Factory automation : 0.25ms to 10ms Smart grids: 3-20ms / Process automation: 50-100ms	Assist in autonomous driving Examples: overtaking systems, V2V comm, navigation Resources: CPUs, storage, Mobileye, <u>SPH</u> Latency: Ideally <20ms, up to 100 ms	Process images (image recognition) from devices, wearables and annotate useful information Examples: Google glass Resources: CPUs, FPGAs, ATS Latency: seamless - <20 <u>ms</u> , sensitive- <25ms Tolerable 50- 100ms	Cache data at the edge for faster loading at user end Using Edge as main storage for the devices Examples: cache popular videos in a region, Netflix Resources: Storage, CPUs Latency: Not latency bound					
Video/Video Analytics	FaaS	Speech Recognition	Medical Applications	Enterprise					
Live video analytics and video pre-processing, video transcoding Examples: Traffic video analysis and alarm systems Resources: CPUs, FPGAs, storage, ATS, SPH for Inference? Latency: To be analyzed	Perform web page related pre- processing at the edge and send page to user device Examples: web page rendering, ad block, content evaluation Resources: CPUs, FPGAs, Latency: Not slower than current web page load times	Speech-to-text, User commands, Biometric Recognition Resources: Communication, CPUs, <u>GNA-s, FPGA, SPH</u> Latency: To be analyzed	Assist medical appliances through connectivity and analysis Examples: Tele surgery Resources: CPUS, Communication, storage, ATS, <u>SPH</u> Latency: Tele surgery <150ms without haptic, <10ms with haptic feedback	IMBD, Specific Enterprise WL (i.g: Linked In) Resources: CPUs, Communication, storage, FPGA Latency: <10 ms					

11

Use Case and End Customer Driven Architecture

	On-Premise Edge									
Tiers	Intelligent Sensor/GW		Intelligent Edge		Network Edge		DC Edge		Public Cloud	
Network Latencies (Wire Round trip)	< 1ms		< Ims		1-5ms		5ms + 1-2 ms (every 100kms)		5ms + 5 ms (every 400kms) ►	
Deployment Requirements	Compute Available Power: < 50 W Form Factor: Small Box Thermals: NEBs Mgmt.: Remote		Compute Available Power: ~10KW Form Factor: Rack(s) Thermals: NEBS or Standard DC Mgmt.: Remote		Compute Available Power: <600 W Form Factor: Pizza box Thermals: NEBS Mgmt.: Remote		Compute Available Power: 9KW/rack / 1KW sqm Form Factor: Rack(s) Thermals: NEBS or Standard DC Mgmt.: Remote		Standard Data Center (DC)	
Where, What & Why	Use Case	KPI	Use Case	КРІ	Use Case	КРІ	Use Case	КРІ	Use Case	KPI
	Intelligent Transportation	Data Privacy, Backhaul Traffic Savings, Reliability	AR/VR	Latency. Backhaul Traffic Savings, Network scalability Data Privacy, Backhaul Traffic Savings, Reliability	Intelligent Transportation	Data Privacy, Backhaul Traffic Savings, Reliability throughput Latency	Intelligent Transportation	Data Privacy	CDN Storage GW	Backhaul traffic savings, Throughput
							Video Analytics	Same as Int. Transp.		
	V2V	Latency					Drone/IoT	Same as Int. Transp.		
			Retail		V2V	Latency	Healthcare	Access to services		
	Retail	Same as Int. Transp			Video Analytics	Same as Int. Transp.		Backhaul Traffic		
	Video Analytics	Same as Int. Transp.	RT Streaming Healthcare	Same as AR/VR Access to services	Drone/IoT	Same as Int. Transp.	CDN & Storage	Savings Throughtput		Same as CDN
					Rural	Access to services	Faas	Latency		
							AR/VR/MR	Latency		

(1) DECOMPOSE USE CASE IN MICROSERVICES AND UNDERSTAND DEPLOYMENT **REQUIREMENTS/OPTIONS** Requirements to Distributed DATA CENTER EDGE CLOUD NETWORK EDGE / STREET CABINET System Architecture (a) Media (c) Video Analytics (b) Composition (e) Data Base (d) Biz. Logic Use case decomposition (2) UNDERSTAND HOW MICROSERVICES CAN ALLOW ADOPTION AND STICKINES ABSTRACTION intel. intel intel. intel Intel HW Architecture CORE CORE CORE MOVIDIUS Positioning w.r.t (1) (c) DL Pipeline (b) Composition 15 Streamer Server (d) Biz. Logic intel. intel DIFFERENT ATOM xeon TRADE-OFFS **DIFFERENT KPIS** Platform Architecture (3) TRANSLATE (1) AND (2) INTO SW/HW SYSTEM ARCHITECTURE Edge Appliances (Rack, Tiny PODs, Platform etc..) ThinkCentre Orchestration Network Edge Appliances Immersion cooling Technologies

Meetup: Edge Big Bang

Outline

Network Matters for E2E QoS.. And Matters a Lot

CONDUCTED FOUR TYPE OF EXPERIMENTS:

- COMPUTE RESOURCE SELECTION (CORE PINNING)
- a) YES = Workloads pinned into specific cores
- b) NO = No core pinning
- NETWORK AWARE (INTERFACE SELECTION)
- a) YES = Different interface for CDN and KIBERNETICA
- b) NO = Same interface for both

SHOWED RESULTS:

- Degradation of for each deployment with respect to baseline (Kibernetica alone)
- Application KPIS={fps, latency} Statistics={avg, 50/75/95 percentile}

NOTES:

- COMPUTE AWARE REDUCE DEGRADATION
- NETWORK AWARE REDUCE DEGRADATION
- DISCLAIMER: we need to keep looking at the results
- DISCLAIMER 2: the fact that network + compute aware allocation has better performance that baseline can be something that we need more runs to normalize results

Sum of value p75 latency-kibernetika2021-avg — Sum of value p95 latency-kibernetika2021-avg

But ... We Still Have Some Important Challenges

- Network end to end observability
- Network monitoring at service or application level
- Establish end-to-end QoS hooks between Edges and UE
- Application metrics vs system metrics in multitenant deployments
- And

We need standards and common APIS We need network to as part of the service life cycle mgmt. Re CAMARA PROJECT, OPG ...

... and we need it secure

Outline

What Sustainable Distributed Edge May Require ...

	E2E INFRA & SERVIO ORCH.	CE DATATO COMPL	D COMPUTE VS JTE TO DATA	NEW ORCH. MECHANISMS					
	NETWORK		WATTS/BYTE (constant versus dynamic depending on load or technologies)						
		PHYISCAL HEAT RE-USE INFRA. (constant versus dynamic depending on load or technologies)							
I	EDGE APPLIANCE								
	ENERGY IN ENERGY OUT	RENEWAL (solar, wind)	ENERGY RE-USE (HEAT RE-USE)						
	SYS. ARCH INGREDIENTS	IPU ROLE	RESOURCE POOLING	NEW CHASIS AND MATERIALS	NEW COOLING SCHEMES		•		
	SILICON INGREDIENTS	POWER OPTIMIZATIONS	SILICON PARTITIONING	SUSTAINABLE- SST					

We Need to Adapt Distributed Edge System Architectures

intel.²⁵

We Need Application Awareness

M = 1 -> Highest accuracy Highest Power Consumption

 $M\!>\!1\!-\!>$ The bigger M the lower accuracy and the Lower Power Consumption

Call For Action

Call For Action

1. Common services framework for Edge to Cloud for application development:

"Change the paradigm from "local/enterprise/private" or "specific cloud" to anywhere (Edge to Cloud)"

2. Event driven functions and Open APIs for interoperability

3. End-End Sustainability for Edge-Cloud

- Awareness at infrastructure (HW/SW) and application level
- Reporting, Telemetry, and feedback loop to achieve sustainability goals
- Using sustainability as a metric for deployment of distributed apps from Edge to Cloud

References

References

Conference and White Papers

- Composable Architectures for a Sustainable Edge
 - https://networkbuilders.intel.com/solutionslibrary/composablearchitectures-for-a-sustainable-edge
- Autonomous Lifecycle Management for Resource-Efficient Workload Orchestration for Green Edge Computing
 - https://ieeexplore.ieee.org/document/9612603
- Convergence of Edge Services & Edge Infrastructure
 - https://ieeexplore.ieee.org/document/9665021
 - https://dblp.org/pid/08/2452.html

Questions?

Francesc Guim, Solutions Architect francesc.guim@intel.com

