## Intel® Network Builders Insights Series Run Your Containers Anywhere With Amazon Elastic Kubernetes (EKS) on Intel

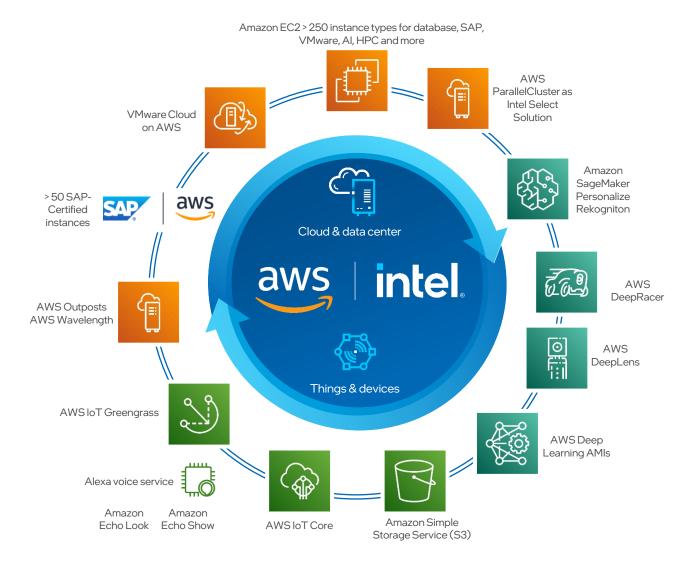
Mohan Potheri, Cloud Solutions Architect, Intel Sathish Venkat, Field Applications Engineer, Intel



#### Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.


Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.



- Intel on AWS
- Kubernetes & Containers
- Amazon Elastic Kubernetes Service (EKS)
- Hybrid Cloud & EKS Anywhere
- Use Cases with EKS Anywhere
- EKS Anywhere Solution for AI/ML
- Key Takeaways

#### AWS Services Powered by Intel



- 15+ year engineering partnership
- Collaboration with AWS and its partners on Digital Transformation
- Shared customer passion
- High performance + low costs
- World class supply chain

#### 3rd Gen Intel® Xeon® Scalable Processors

#### Performance made flexible

Only x86 data center processor with

Built-in Al & security solutions



#### Advanced security solutions



Intel® Software Guard Extensions



Intel® Crypto Acceleration



Intel®Total Memory Encryption



Intel® Platform Firmware Resilience



Intel® Deep Learning Boost



Scalable, flexible, customizable

Intel® Speed Select Technology



Intel® AVX-512



Optimized Software

#### Breakthrough Data Performance

Targeted for 1S-2S systems



200 series





Intel® Optane™ SSD PS800K



## AWS EC2 Instance Offerings - Optimized by Use Case

**Balanced** workloads



#### **General Purpose**

M6i (NEW) Up to 128 vCPUs & 512 GB of memory - ICX

M5

Non-burstable CPU usage SKX/CLX-24C

M5d

M5 with local host attached NVMe SSDs SKX/CLX-24C

M5zn

M5 with local host attached NVMe SSDs SKX/CLX-24C

T3

Burstable CPU usage SKX/CLX-24C

Compute-intensive, HPC, data lakes, network appliances



#### **Compute Optimized**

C6i (NEW) Up to 128 vCPUs & 256 GiB of memory - ICX

C5

High performance \$/performance optimized SKX-18C CLX - 24C

C5d

C5 with local host attached NVMe SSDs SKX - 18C CLX - 24C

C5n

C5 with up to 100 Gbps network bandwidth SKX-18C

High performance databases, in-memory databases



#### **Memory Optimized**

X2i(NEW)

Memory-optimized & up to 4,096 GiB of memory-ICX&CLX

R6i (*NEW*)

Up to 128 vCPUs & 1.024 GiB of memory – ICX

R5, R5b Up to 768GiB of Memory SKX - 24C

One of the Lowest Price/GiB of RAM HSX - 16C (4 socket)

X1e

X1 with Extended Memory Footprint HSX - 16C (4 socket)

Z1d

Single threaded compute optimized with high memory SKX - 12C

Bare Metal

8 Socket Xeon with 6 TiB Memory up to 24 TiB; SKX/CLX - 28C

High IOPS at low cost



#### **Storage Optimized**

14i (NEW)

NVMe SSD Storage New size with up to 128 vCPUs and 1,024 GiB of memory-ICX

NVMe SSD Storage and Bare Metal Instances

BDX - 16C

l3en

NVMe SSD Storage and Bare Metal Instances

SKX - 24C

H1

Compute and Memory Balanced, Up to 16TB HDD Storage

BDX - 16C

D3, D3en

Up to 366 TB HDD Storage, Lowest Price/Disk Throughput Perf CLX - 24C

Accelerated WLs machine learning, 3D rendering



#### **Accelerated Computing**

P3dn

P3 with Local Host Attached NVMe SSDs and up to 100Gbps Network Bandwidth SKX - 24C

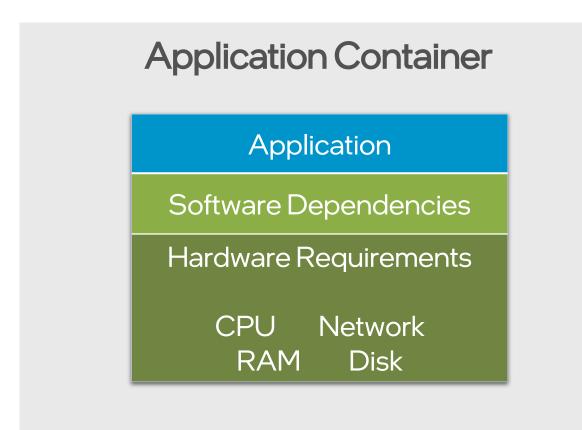
G4

2 NVIDIA Tesla M60 GPUs per CPU CI X - 24C

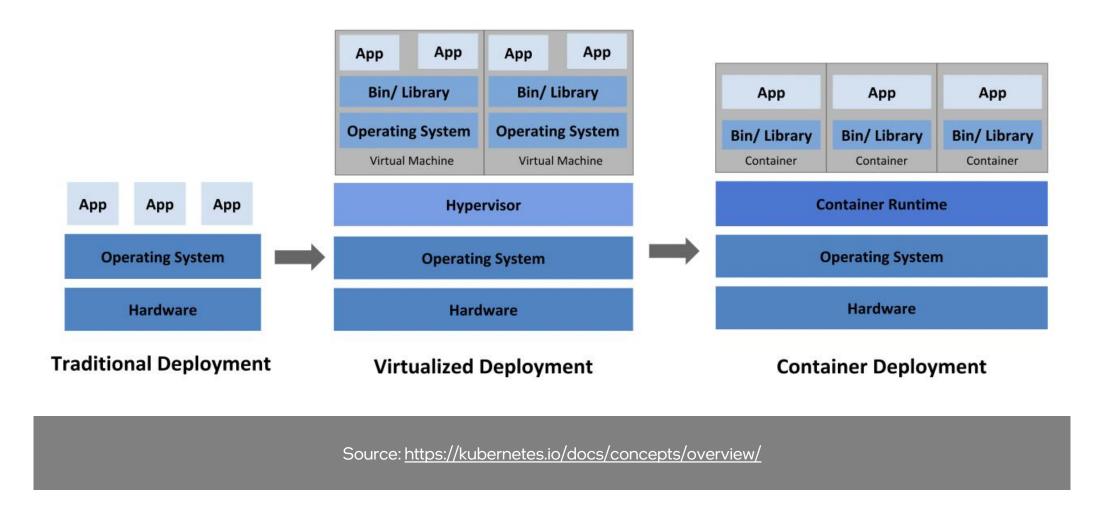
F1

4 FPGAs per CPU BDX-16C

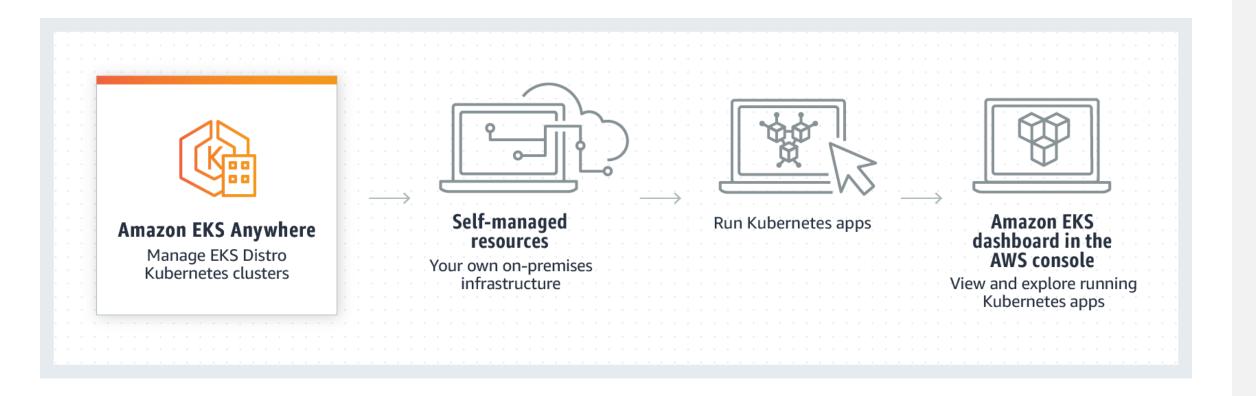
DL1 (NEW)


Habana Gaudi AI/ML Up to 8 accelerators

See https://aws.amazon.com/ec2/instance-types/


### Containers are Revolutionizing Modern Workloads

#### Containers are

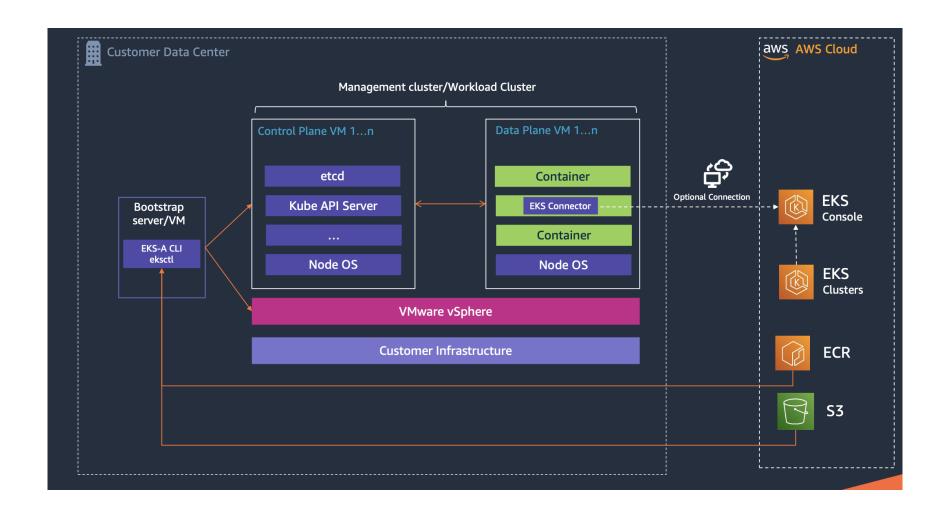

- The predominant mechanism for developing and delivering modern applications
- Highly efficient and can run multiple applications on a single server
- Self-contained as they include everything needed to run an application and hence Extremely portable
- Flexible and easy to use for developers



#### Emergence of Kubernetes



## Amazon EKS Anywhere




### Hybrid Cloud with AWS



- A hybrid deployment is a way to connect infrastructure and applications between cloudbased resources and existing resources that are not located in the cloud.
- The most common method of hybrid deployment is between the cloud and existing on-premises infrastructure to extend, and grow, an organization's infrastructure into the cloud while connecting cloud resources to internal system.

## Hybrid Cloud with AWS



## Key Use Cases for EKS Anywhere

Hybrid: Consistently run workloads on cloud and on-premises

Modernization: Containerize existing on-premises apps

IOT: Data Processing on Edge locations

#### IOT

- Containers are an ideal way to install and update applications that run on IoT devices
- Lightweight nature of containers makes them ideally suitable for resource constrained IOT devices
- Enables easier development of software with easier updates for the endpoint devices
- Containers provide the ability for easily scaling IoT environments





#### Telecom

- Open RAN is an industry initiative led by network equipment providers and mobile network operators (MNOs) to design and deploy open, non-proprietary interfaces and protocols-based RAN elements on x86
- With Amazon EKS Anywhere, MNOs can now run, deploy and manage Open RAN solutions, including the distributed unit and centralized unit workloads
- Amazon EKS Anywhere can provide the same unified APIs across the cloud and on-premises environments.
  - RAN,
  - · Core,
  - · IMS,
  - OSS/BSS

### Application Modernization

- Modern Applications leverage Microservices, which focuses on building single-function modules with well-defined interfaces and operations
- Containers are a great vehicle to deploy Microservices
- EKS Anywhere can be leveraged for orchestration of containerized Microservices



## EKS Anywhere Hybrid Cloud Solution for Machine Learning

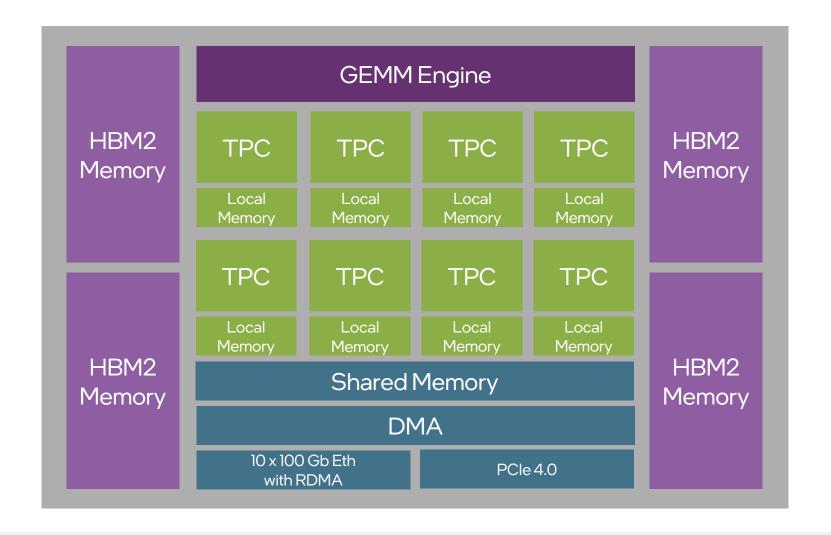
## Solution Schematic with 3rd Gen Intel® Xeon® Scalable Processors

Public Cloud

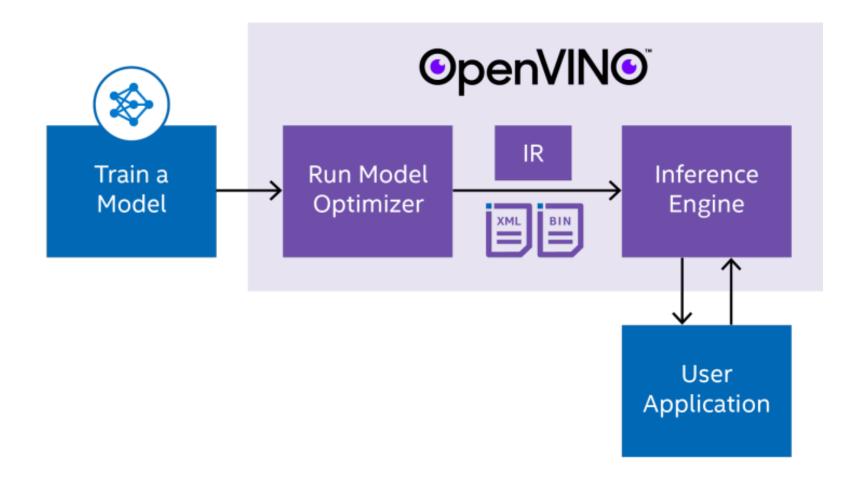
AWS EKS running on Intel Instance AWS c6i Hybrid Cloud

Private Cloud

AWS EKS Anywhere running Intel based virtual machines on VMware vSphere 7


Intel OpenVino Optimized containers

Inference for Bone Marrow Cell Classification


#### The Solution

- GPUs are needed for training complex machine learning models
- In this solution we take public data
- The use case is to train bone marrow cell classification.
- We fit the data leveraging deep learning neural networks until we obtain a desired level of accuracy
- The model will be used for inference across different hybrid cloud endpoints with EKS Anywhere

## AWS DL1 Instance with Habana® Gaudi® Processor Training and Inference using OpenVINO™ Toolkit



#### Machine Learning Training and Inference



### Inference in the Cloud and Edge

- The trained models were optimized for inference with OpenVINO
- The models were then deployed on Intel based instances on AWS
- The same models were deployed on-premises
- Performance improvements were seen in inference between 2<sup>nd</sup> and 3<sup>rd</sup> Gen Intel<sup>®</sup> Xeon<sup>®</sup> Scalable processor instances
- The same model worked flawlessly across the hybrid cloud environment



## Key Takeaways

- Intel® Xeon® technology is pervasive across Amazon AWS and on-premises
- Containers are the future of workloads
- AWS EKS and EKS Anywhere provide the ability to consistently deploy and manage across public and private clouds
- EKS Anywhere provides compelling use cases for
  - IOT
  - Telco
  - Application Modernization
  - Machine Learning

## Questions?

Xiaojun (Shawn) Li, Sales Director, Next Wave OEM & eODM <a href="mailto:xiaojun.li@intel.com">xiaojun.li@intel.com</a>

Mohan Potheri, Cloud Solutions Architect potheri.mohan@intel.com

Sathish Venkat, Field Applications Engineer venkat.sathish@intel.com

## Intel® Network Builders Insights Series Revisit our previous sessions



https://networkbuilders.intel.com/social-hub/webcast/insights-series

#