

Powering Mobile Network Security with Virtualized Security Gateway

Disaggregate and distribute Mobile Security Gateways

Mar 12, 2024

Webinar Speaker

Karim MCHIRKI

VP of Product Management, **6WIND**

As VP of Product Management, Karim is leading the 6WIND product roadmap definition and is helping the product committee, in accordance with the company business strategy, in cultivating product vision and enriching the product solutions

Company Profile

6WIND is a **global networking software company**, with Headquarters in Paris, France, Singapore and in Santa Clara California USA.

We are specialized in delivering high performance and secure networking software solutions to support customers with new applications for 5G, IoT and SD-WAN.

We deliver **Virtualized**, **Cloudified** and **Secure** network solutions that offer the **lowest TCO** in the market with **best cost-performance functionality ratio**.

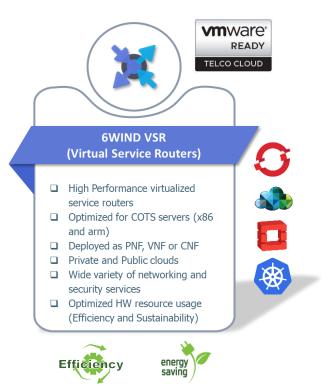
6WIND's leading edge solutions are used by CSPs, MNOs, NHPs, Cloud Providers, Datacenters, and Enterprises around the world.

Deployments Green-Tech

6WIND[©] Copyrights 2024


Meeting Our Customers' Challenges

Best-in-Class Virtualized Network Solutions



6WIND[©] Copyrights 2024

6WIND Virtual Service Router Product Family

Higher Performance

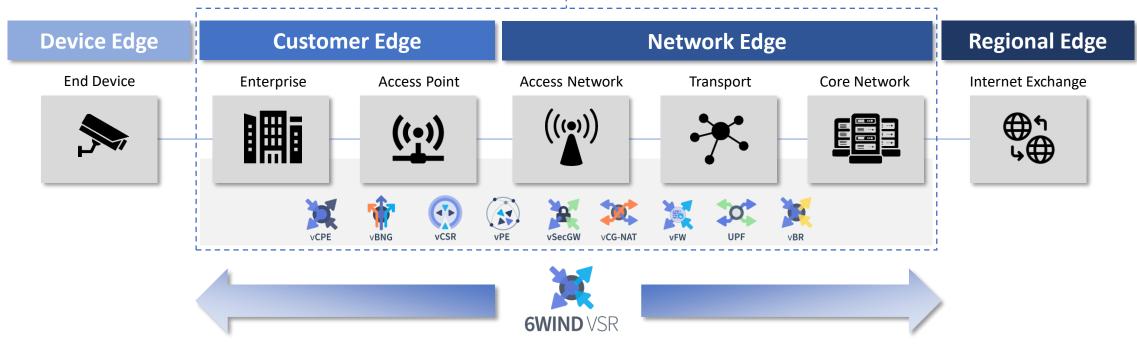
- **Optimized for multicore Processors**
- Linear Scalable performance
- Lockless implementation for High performance and low latency.

Lower Cost

- Optimized resource usage
- Automation Simple operations
- Hardware agnostic
- Runs on COTS servers

Rapid Service Innovation

- Software based solutions
- Easy feature enhancements
- Faster build new services
- TTM & Competitiveness


6WIND[©] Copyrights 2024 **6WIND**

Pave the way for the Edge transformation

Network Virtualization and Cloudification

Performance, Agility, flexibility and Efficiency

5G: The need for **Security**

6WIND[©] Copyrights 2024

Security in 5G Specifications

EU Security

Access Network Security

Core Network Security

Application Network Security

6WIND[©] Copyrights 2024

5G Security: Cybersecurity of 5G - EU Toolbox Measures

EU 5G Cybersecurity policy

EU TOOLBOX FOR 5G SECURITY

A SET OF ROBUST AND COMPREHENSIVE MEASURES FOR AN EU COORDINATED APPROACH TO SECURE 5G NETWORKS

> March 2021 #Cvbersecurity

5G: a new technology

While 3G made mobile internet possible and 4G allowed mobile broadband, 5G is expected to become the connectivity infrastructure that will pave the way for new products and services and affect all sectors of society. Benefits will include the following.

E-HEALTH

- Remote health monitoring, patients records and smart diagnosis
- · Utilising robots to help surgeons and improve

- SMART ENERGY GRIDS
- · Highly efficient power lines and fewer outages on a smaller scale
- · Easier deployments with a lower environmental

FACTORIES

- Better control over time-sensitive internal
- Remote control access to warehouse machinery

MEDIA & **ENTERTAINMENT** An amplified viewing

- experience such as virtual reality · Ultra fast high-bandwidth
- applications such as video streamino

- Enabling connected and automated mobility with the goal of zero accidents

 Enabling connectivity in all modes of transport

Europe is the most advanced region in the deployment of large-scale 5G trials in vertical industries (in which close to €1 billion had been invested by the end of 2020), including for 5G transport corridors. By the end of 2020, 5G services were available in 500 European cities.

Cybersecurity of 5G: an imperative precondition

5G networks are the future backbone of our increasingly digitalised economies and societies. Billions of connected objects and systems are concerned, including those used in critical sectors such as energy, transport, banking and health, as well as those used in industrial control systems that carry sensitive information and that support safety systems. Ensuring the cybersecurity and resilience of 5G networks is therefore essential.

EU toolbox conclusions: key measures

Member States should have measures in place and powers to mitigate risks. In particular they should:

- strengthen security requirements for mobile network operators;
- assess the risk profile of suppliers; apply relevant restrictions for suppliers considered as high risk, including necessary exclusions for key assets;
- · ensure that each operator has an appropriate multi-vendor strategy to avoid or limit any major dependency on a single supplier and avoid dependency on suppliers considered to be high risk.

The European Commission, together with Member States, should take measures to:

- · maintain a diverse and sustainable 5G supply chain in order to avoid long-term dependency, including by:
 - · making full use of the existing EU tools and instruments (foreign and direct investment screening, trade defence instruments, competition),
- further strengthening EU capacities in the 5G and post-5G technologies by using relevant EU programmes and funding:
- facilitate coordination between Member States regarding standardisation to achieve specific security objectives and develop relevant EU-wide certification schemes.

Timeline of the EU 5G cybersecurity policy

22 March

2019

Conclusions

by the

European

Council

2019

The European

Commission

published a

recommendation

for Member States

to take concrete

actions to assess the

cybersecurity risks

of 5G networks and

to strengthen risk

mitigation measures.

2019

2020

January 2020).

2020

Progress

New EU

cybersecurity

strategy

and report on

the impacts of

the Commission

recommendation

on 5G

cybersecurity.

At the same time, due to a less centralised architecture, smart computing power at the edge, the need for more antennas and increased dependency on software, 5G networks offer more potential entry points for attackers.

26 March 9 October 21 November 29 January July

2019 States

finalised the EU coordinated risk assessment of 5G network security.

The Member

The EU Agency for Cybersecurity published an extensive report on threats relating to 5G networks.

Publication of

the toolbox of report on mitigation toolbox measures by implementation. Member States. Commission communication on implementing the EU toolbox (COM(2020) 50 final of 29

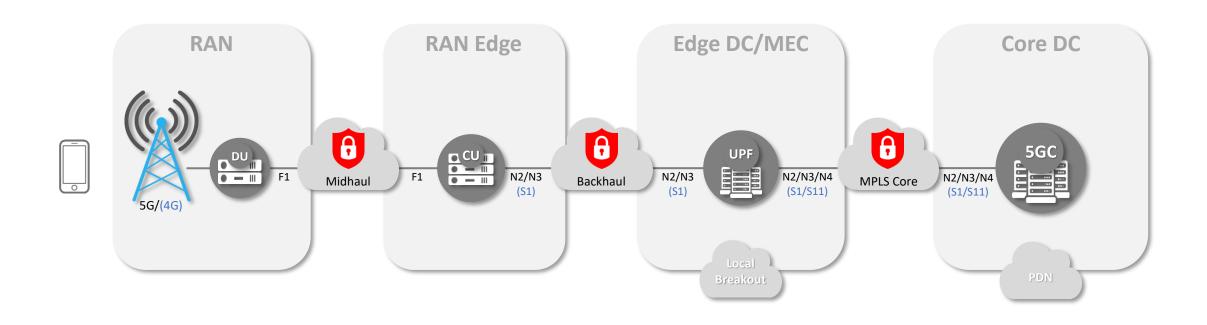
October 2020

The European Council called on the EU and the Member States 'to make full use of the 5G cybersecurity toolbox' and 'to apply the relevant restrictions on high-risk suppliers for key assets'.

December **By June 2021**

Commission calls on Member States to complete the implementation of the main toolbox measures.

Source: https://ec.europa.eu/newsroom/dae/redirection/document/64577


6WIND[©] Copyrights 2024 **6WIND**

Security in Mobile Networks

11

From Access to Core network

E2E security requirements

Security for 5G systems

IPsec ESP & IKEv2 as a requirement

12

9.2 Security mechanisms for the N2 interface

N2 is the reference point between the AMF and the 5G-AN. It is used, among other things, to carry NAS signalling traffic between the UE and the AMF over 3GPP and non-3GPP accesses.

The transport of control plane data over N2 shall be integrity, confidentiality and replay-protected.

In order to protect the N2 reference point, it is required to implement IPsec ESP and IKEv2 certificates-based authentication as specified in sub-clause 9.1.2 of the present document. IPsec is mandatory to implement on the gNB and the ng-eNB. On the core network side, a SEG may be used to terminate the IPsec tunnel.

9.3 Security requirements and procedures on N3

N3 is the reference point between the 5G-AN and UPF. It is used to carry user plane data from the UE to the UPF.

The transport of user data over N3 shall be integrity, confidentiality and replay-protected.

In order to protect the traffic on the N3 reference point, it is required to implement IPsec ESP and IKEv2 certificatebased authentication as specified in sub-clause 9.1.2 of the present document with confidentiality, integrity and replay protection. IPsec is mandatory to implement on the gNB and the ng-eNB. On the core network side, a SEG may be used to terminate the IPsec tunnel.

9.1.2 Implementation requirements

IPsec ESP implementation shall be done according to RFC 4303 [4] as profiled by TS 33.210 [3]. For IPsec implementation, tunnel mode is mandatory to support while transport mode is optional.

IKEv2 certificate-based authentication implementation shall be done according to TS 33.310 [5]. The certificates shall be supported according to the profile described by TS 33.310 [5]. IKEv2 shall be supported conforming to the IKEv2 profile described in TS 33.310 [5].

9.4 Security mechanisms for the Xn interface

Xn is the interface connecting NG-RAN nodes. It consists of Xn-C and Xn-U. Xn-C is used to carry signalling and Xn-U user plane data.

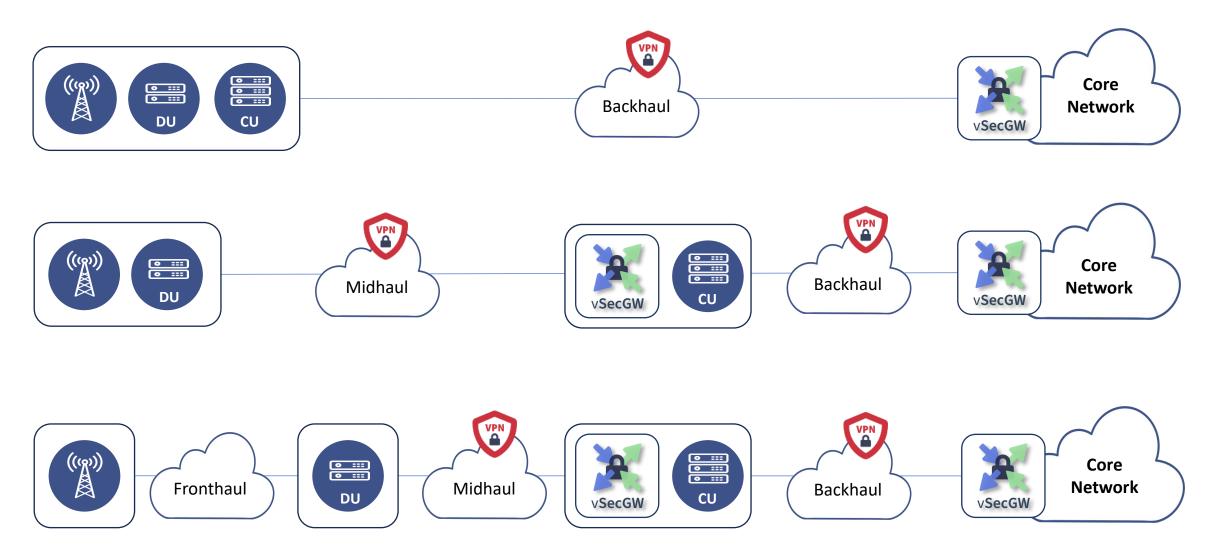
The transport of control plane data and user data over Xn shall be integrity, confidentiality and replay-protected.

In order to protect the traffic on the Xn reference point, it is required to implement IPsec ESP and IKEv2 certificatebased authentication as specified in sub-clause 9.1.2 of the present document with confidentiality, integrity and replay protection. IPsec shall be supported on the gNB and ng-eNB.

9.8.2 Security mechanisms for the F1 interface

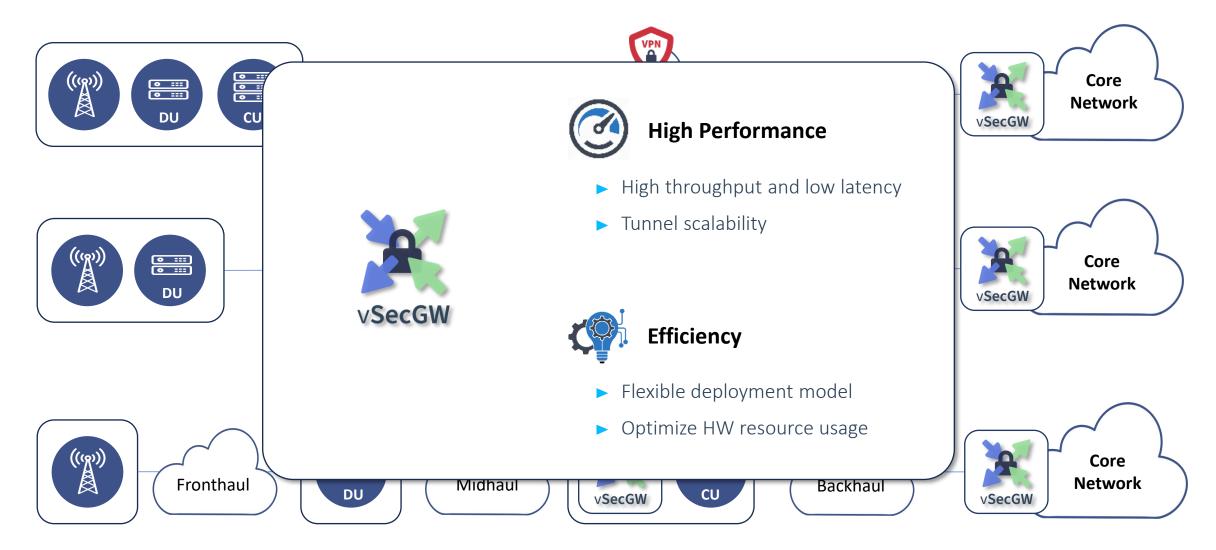
The F1 interface connects the gNB-CU to the gNB-DU. It consists of the F1-C for control plane and the F1-U for the user plane. The security mechanisms for the F1 interface connecting the IAB-node to the IAB-donor-CU are detailed in clause M.3.3 of this document.

In order to protect the traffic on the F1-U interface, IPsec ESP and IKEv2 certificates-based authentication shall be supported as specified in sub-clause 9.1.2 of the present document with confidentiality, integrity and replay protection.


In order to protect the traffic on the F1-C interface, IPsec ESP and IKEv2 certificates-based authentication shall be supported as specified in sub-clause 9.1.2 of the present document with confidentiality, integrity and replay protection.

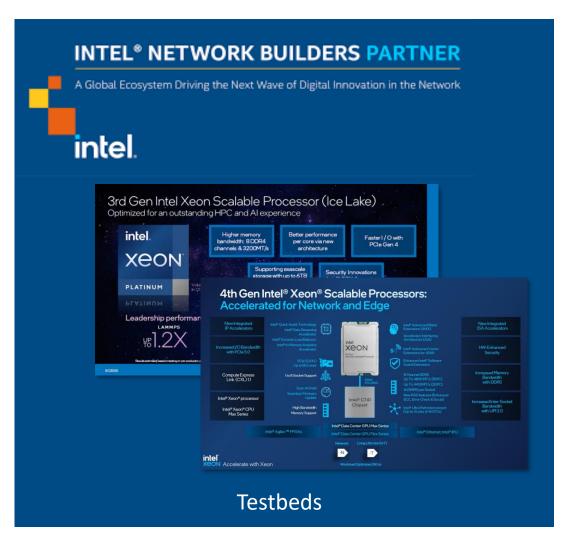
IPsec is mandatory to implement on the gNB-DU and on the gNB-CU. On the gNB-CU side, a SEG may be used to terminate the IPsec tunnel.

6WIND vSecGW : Securing Mobile Networks


Deployment options

6WIND vSecGW : Securing Mobile Networks

Deployment options

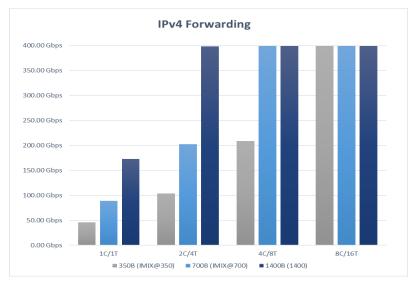


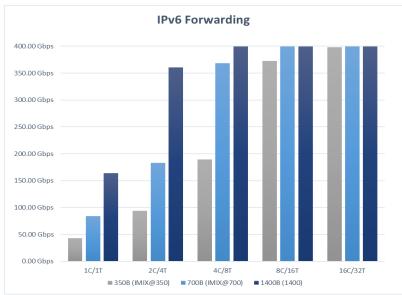
Forwarding and IPsec Performance

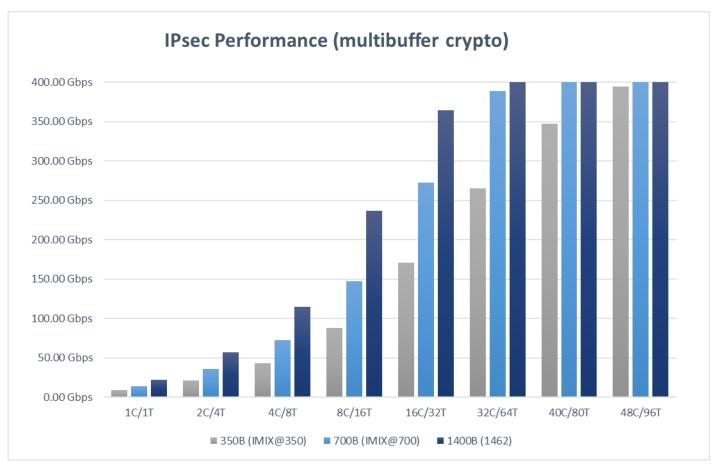
Demo Lab: Leveraging Intel's Power base

- ✓ Performance Benchmarking
- ✓ Boosting Business Agility
- ✓ Enabling innovation

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.

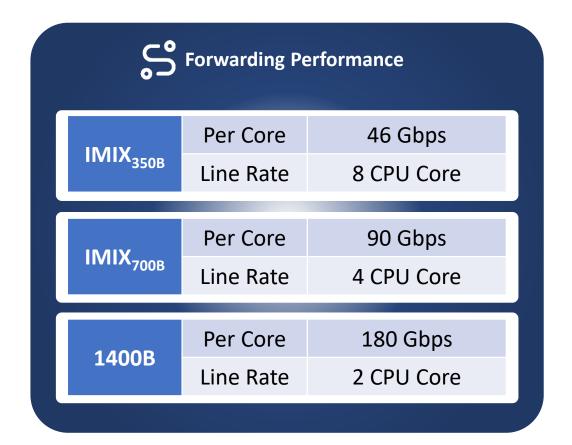

6WIND

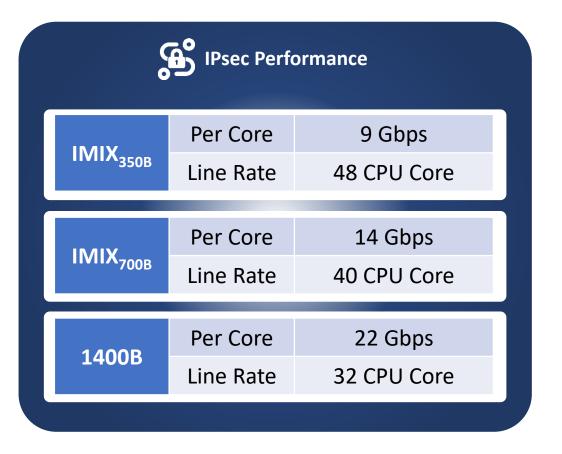

Performance Benchmarks: Dual Stack (v4/v6) Performance



17

Pure software performance




Test platform: Intel® Xeon® Gold 6342 CPU @ 2.80GHz Pure software performance, with no HW acceleration IPsec performance based on AES-GCM Line rate performance (400GBps) using 2 x Intel E810

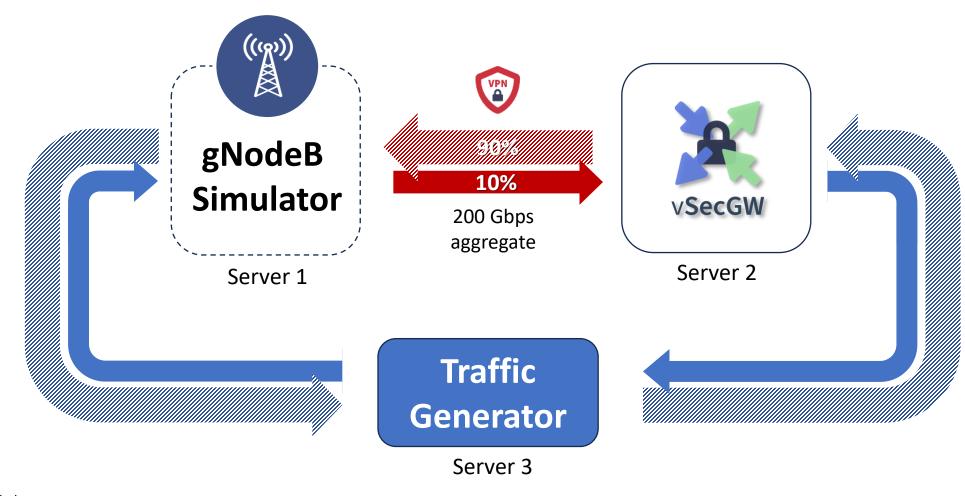
Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.

Performance Benchmarks: Dual Stack (v4/v6) Performance

Test platform: Intel® Xeon® Gold 6342 CPU @ 2.80GHz Pure software performance, with no HW acceleration IPsec performance based on AES-GCM Line rate performance (400GBps) using 2 x Intel E810

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.

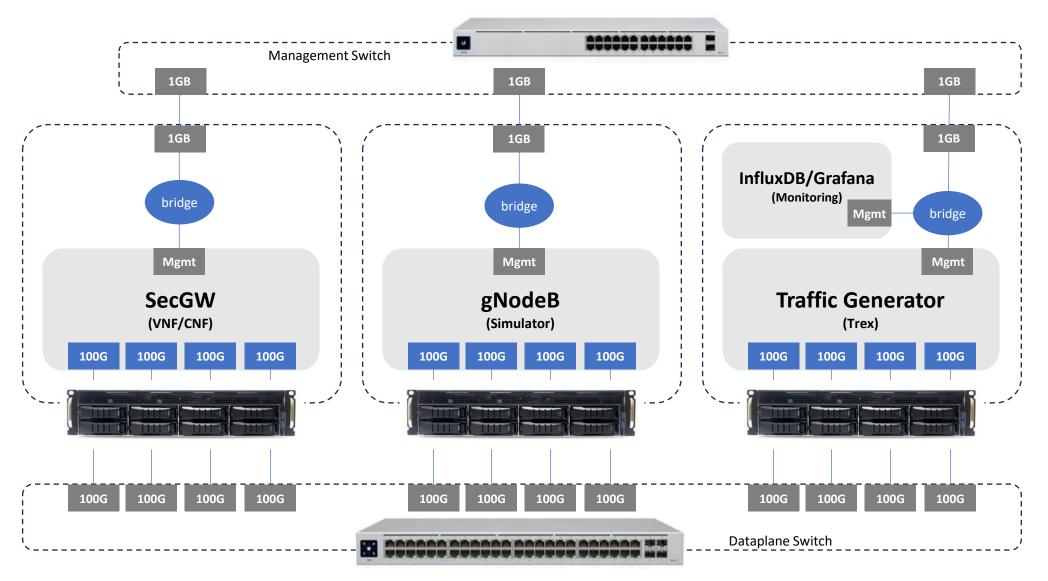
Mobile Security Gateway


6WIND® Copyrights 2024

19

6WIND vSecGW: Demo Setup

High-level design


Each server includes:

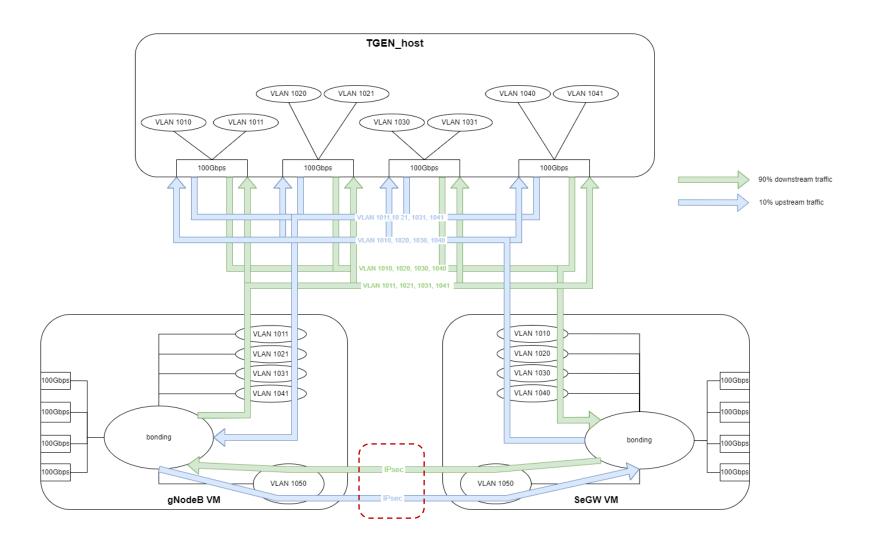
- 2 x Intel® Xeon® Gold 6342 CPU @ 2.80GHz (24 cores / 48 threads each)
- 2 x Intel® Ethernet Network Adapter E810-2CQDA2 (one dual-port card on each NUMA node)
- 512GB RAM

6WIND SecGW: Testbed design

Physical topology

6WIND

6WIND SecGW: Testbed design



Logical topology

Sockets: 2, Cores: 48, HyperThreads: 96

socket 0	socket 1	
c0 c1	c24 c25	Host
0 48 1 49	24 72 25 73	CPUs
t2 t3	C20 C27	İ
2 50 3 51	26 74 27 75	i
c4 c5	c28 c29	
4 52 5 53	28 76 29 77	
c6 c7	c30 c31	
6 54 7 55	30 78 31 79	
c8 c9	c32 c33	
8 56 9 57	32 80 33 81	
c10 c11	c34 c35	
10 58 11 59	34 82 35 83	VM.
c12 c13	c36 c37	CPUs
12 60 13 61	++ ++ 36 84 37 85	
c14 c15	c38 c39	
14 62 15 63	++ 38 86 39 87	Fast Path
c16 c17	c40 c41	CPUs
16 64 17 65	++ 40 88 41 89	
c18 c19	C42 C43	
18 66 19 67	42 90 43 91	
c20 c21	c44 c45	
20 68 21 69	++ 44 92 45 93	
c22 c23	++ c46 c47	
22 70 23 71	++ 46 94 47 95	
	*******	ļ

CPU allocation on SeGW-host

6WIND vSecGW: Running the tests

Packet Lengths (Byte)	Downlink	Uplink	Avg. Packet Length
40-79	13%	65%	60
80-159	130/	24%	120
160-319	2%	3%	240
320-639	2%	2%	480
640-1279	2%	2%	960
1280-2559	69%	4%	1500

IMIX traffic profile

100000		
segw> show ipv4-:	routes summary vrf	trusted
Route Source	Routes	FIB (vrf default)
kernel	100000	100000
connected	4	4
static	1	1
Totals	100005	100005

Established IPv4 Routes and IKE SAs

Global Statistics

 connection
 : localhost, Port 4501
 total_tx_L2
 : 194.76 Gbps

 version
 : STL @ v3.02
 total_tx_L1
 : 200.26 Gbps

 cpu_util.
 : 4.85% @ 48 cores (24 per dual port)
 total_rx
 : 193.95 Gbps

 rx_cpu_util.
 : 0.0% / 0 pps
 total_pps
 : 34.42 Mpps

total cps. : 0 cps

async_util. : 0% / 41.01 bps

Port Statistics

port	0	l 1	l 2	J 3	total
owner	root	l root	I root	l root	I
link	UP	UP	UP	UP	l
state	TRANSMITTING	TRANSMITTING	TRANSMITTING	TRANSMITTING	l
speed	100 Gb/s	100 Gb/s	100 Gb/s	100 Gb/s	l
CPU util.	4.8%	4.8%	4.89%	4.89%	l
		l	l		<u> </u>
Tx bps L2	48.69 Gbps	48.69 Gbps	48.69 Gbps	48.69 Gbps	194.76 Gbps
Tx bps L1	50.07 Gbps	50.07 Gbps	50.07 Gbps	50.07 Gbps	200.26 Gbps
Tx pps	8.6 Mpps	8.6 Mpps	8.6 Mpps	8.6 Mpps	34.42 Mpps
Line Util.	50.07 %	50.07 %	50.07 %	50.07 %	l
		<u> </u>	<u> </u>		
Rx bps	48.87 Gbps	49.16 Gbps	48.11 Gbps	47.81 Gbps	193.95 Gbps
Rx pps	8.51 Mpps	8.57 Mpps	8.55 Mpps	8.65 Mpps	34.28 Mpps
I		I	I		l
opackets	47882024	47882095	47881999	47882740	191528858
ipackets	47370936	47669046	47583991	48126321	190750294
obytes	33870273544	33870339208	33870269484	33870802264	135481684500
ibytes	33995371000	34196958756	33468059840	33258611068	134919000664
tx-pkts	47.88 Mpkts	47.88 Mpkts	47.88 Mpkts	47.88 Mpkts	191.53 Mpkts
rx-pkts	47.37 Mpkts	47.67 Mpkts	47.58 Mpkts	48.13 Mpkts	190.75 Mpkts
tx-bytes	33.87 GB	33.87 GB	33.87 GB	33.87 GB	135.48 GB
rx-bytes	34 GB	34.2 GB	33.47 GB	33.26 GB	134.92 GB
		<u> </u>	<u> </u>	<u> </u>	
oerrors	0	0	0	0	0
ierrors	0	0	0	0	0


drop_rate : 0 bps

queue full : 0 pkts

6WIND® Copyrights 2024 6WIND

6WIND vSecGW: Performance Monitoring

Take Aways Why 6WIND vSecGW?

25

6WIND vSecGW

Efficiently Enable Security in Mobile Networks

- Flexible and Agile deployment
- Fully virtualized (VNF & CNF)
- High Performance and Scalability
- COTS server based
- No HW acceleration required
- Enhanced Power Efficiency
- Lower TCO

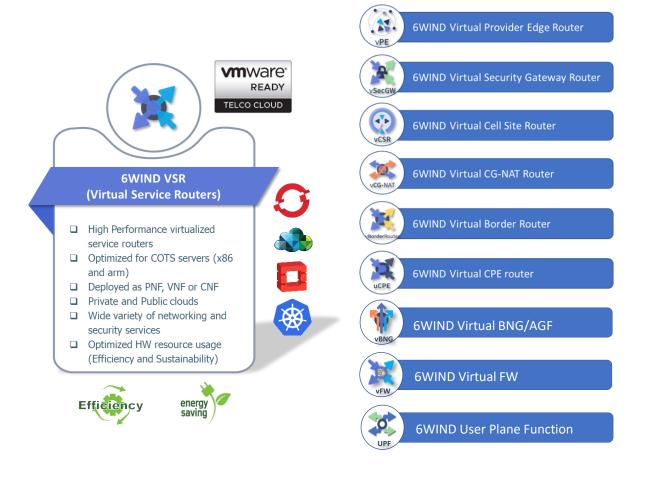
- ✓ Private and Public
- ✓ Access Network security
- ✓ MEC security
- ✓ Network Slicing
- ✓ Network sharing (MOCN, MORAN)

Call to Actions

27

Assistance

Network Virtualization Journey
Optimizing Network Efficiency
Improving Network Security TCO
Delivering High Performance in the Cloud


Considering Projects

Private Wireless Networks

Multi Access Edge Computing

Open RAN

Virtualization of Network Functions

Register for a free evaluation: https://www.6wind.com/vsr-evaluation

Thank You!

www.6wind.com

28

Singapore