Hi [[ session.user.profile.firstName ]]
Sort by:
    • Evaluations of a New Ionic Liquid Stationary Phase with PEG Like Selectivity Evaluations of a New Ionic Liquid Stationary Phase with PEG Like Selectivity Leonard M. Sidisky, Supelco R&D Manager Recorded: Oct 31 2012 3:00 pm UTC 49 mins
    • Geminal dicationic and polyionic ionic liquids have been prepared for use as stationary phases in capillary gas chromatography. These materials are known to provide higher thermal stability for gas chromatography, broader liquid working ranges and broader selectivity ranges than monocationic ionic liquids and polymeric based stationary phases with similar polarity. Recently, a new ionic liquid stationary phase has been developed that provides a selectivity very similar to a polyethylene glycol (PEG) selectivity but with increased thermal stability and lower bleed. We will compare and contrast the similar but unique selectivity of this new phase with traditional PEG phases using a wide variety of different sample types. We will demonstrate the improved thermal stability and lower bleed through a series of different studies and applications.

      Read more >
    • Ionic liquid GC columns for the quantitation of trans fatty acids in fats & oils Ionic liquid GC columns for the quantitation of trans fatty acids in fats & oils Pierluigi Delmonte, Ph.D - U.S. Food and Drug Administration Recorded: May 16 2012 3:00 pm UTC 39 mins
    • The fatty acid composition of a fat or oil is most commonly assessed by gas chromatography, following conversion of the fatty acids methyl esters. The current most refined analytical methods for the quantitation of trans fatty acids rely on the separations provided by long cyanopropyl siloxane capillary columns. The introduction of capillary columns coated with ionic liquids, such as Supelco SLB-IL111, provide an alternative separation tool characterized by a higher stationary phase polarity and selectivity toward geometric and positional isomers of unsaturated fatty acids. The use of these novel capillary columns can provide more refined separations of complex lipid samples. As a result, most conjugated linoleic acid isomers (including t7,c9- and c9,t11-18:1 FA) can be quantitated in a single separation using a 100 m SLB-IL111 capillary column and most 18:1 FA positional and geometric isomers can be separated using a 200 m SLB-IL111. Ionic liquid columns provide more detailed FA profiles, especially for unsaturated fatty acid positional/geometric isomers.

      Read more >
    • Next generation carbon capture technologies for coal Next generation carbon capture technologies for coal Toby Lockwood Recorded: Apr 27 2016 11:00 am UTC 38 mins
    • Established CO2 capture technologies such as absorption with amine solvents are associated with significant energetic and economic penalties, reducing power plant efficiency by around 10% points and increasing the cost of electricity production by up to 80%. Dedicated research programmes worldwide have pursued the development of a wide range of innovative, alternative technologies for CO2 capture, largely by addressing the fundamental gas separation step at the heart of post-combustion, pre-combustion or oxyfuel combustion processes. Novel solvents with lower energy requirements than conventional amines, using phase change systems, ionic liquids, enzyme-activation, or non-aqueous solvents, are promising approaches for post-combustion capture. Alternatively, techniques used in other commercial gas separations, including solid sorbents, membranes, and cryogenic separation, have also been developed for carbon capture through extensive materials research and process optimisation. Whilst challenging for post-combustion capture applications, these techniques may be of particular benefit to pre-combustion capture systems where much higher partial pressures of CO2 are available, and integration of the CO2 capture step and water gas shift reaction can be achieved using sorbents or membranes. In oxyfuel combustion, membranes are also an option for efficient oxygen production, but pressurised combustion systems have demonstrated the most potential for efficiency improvements, potentially in combination with novel power cycles which are better-suited to exploiting the altered combustion conditions. Finally, chemical looping combustion is a unique approach to carbon capture which can achieve dramatic energy savings through its inherent avoidance of any gas separation step, and is undergoing significant scale up. This webinar will review these developments in novel capture technologies and highlight the most promising strategies for achieving major cost reductions.

      Read more >
    • Simulating charged-particle sources and beams Simulating charged-particle sources and beams Steve Malton Recorded: Mar 28 2012 1:00 pm UTC 58 mins
    • Simulation software lets designers characterize their devices simply and effectively. Coupled multiphysics simulations allow the study of beam charging and current flow in imperfect dielectrics and heating effects from both primary and secondary emission. Advanced interactions can be included in simulations, such as the ionization of a background gas to form plasma ion beams.

      This webinar covers modelling of a wide range of devices and physics, from simple thermal electron emission to multispecies ionic plasmas.

      Read more >