Hi [[ session.user.profile.firstName ]]

A risk based approach to continuous processing

The article considers the opportunities for risk based change in facility design through quality by design (QbD) and advances in PAT. It suggests that the inclusion of a mix of biopharmaceutical products alongside oral solid dose products could work based on a manufacturing dancefloor concept. Further that both upstream and downstream may be considered in a new light with the potential for in-process real-time testing and approval significantly reducing or withdrawing entirely the need for work-in-progress (WIP) inventory and quarantine storage needs as supply chain management processes integrate.
Recorded May 14 2015 60 mins
Your place is confirmed,
we'll send you email reminders
Presented by
Rob Bowen
Presentation preview: A risk based approach to continuous processing

Network with like-minded attendees

  • [[ session.user.profile.displayName ]]
    Add a photo
    • [[ session.user.profile.displayName ]]
    • [[ session.user.profile.jobTitle ]]
    • [[ session.user.profile.companyName ]]
    • [[ userProfileTemplateHelper.getLocation(session.user.profile) ]]
  • [[ card.displayName ]]
    • [[ card.displayName ]]
    • [[ card.jobTitle ]]
    • [[ card.companyName ]]
    • [[ userProfileTemplateHelper.getLocation(card) ]]
  • Channel
  • Channel profile
  • Challenges in the Development of Continuous Processes for Vaccines Jun 27 2018 3:00 pm UTC 75 mins
    Danny Vellom
    The development and application of continuous manufacturing processes for vaccines presents both great opportunity as well as significant challenges, both technical and cultural, for the global industry. The key drivers are manufacturing capacity and flexibility, speed to market, and improved quality through the application of Quality-by-Design and Process Analytical Technology (QbD/PAT). Given the diversity of immunogens (toxoids, conjugate and subunit vaccines, live-attenuated and inactivated viruses, VLPs, etc.), and the variety of unique processes currently utilized to produce either single- or multi-component vaccines, it is unlikely that the transition to continuous processing will happen overnight. Additionally, cultural challenges are faced whenever a new mode of operation appears to some as “too different”, especially in a traditionally conservative sector like the developed-world vaccine industry. That said, market forces, global climate change, and Nature’s propensity to fill unoccupied niches with emerging infectious diseases will undoubtedly induce a first round of pioneers to explore this exciting new design space, ultimately leading to a more nimble industry and more and better opportunities for protection for the global population.
  • Approaches for Dissolution Prediction of Tablets made by Continuous Manufacturin Nov 21 2017 2:00 pm UTC 75 mins
    Pallavi Pawar
    Approaches for Dissolution Prediction of Tablets made by Continuous Manufacturing
  • Can the New generation of perfusion technology compete or replace the convention Nov 15 2017 10:00 am UTC 75 mins
    Ankur Bhatnagar
    Recently, there has been a renewed interest in the field of continuous processing. Some key factors driving this interest are – availability of better cell retention devices, improved cell lines and culture medium capable of supporting high cell densities.

    These factors have contributed mainly in reducing the batch duration for making the required quantity of product, thus reducing the medium requirement and chances of batch failures significantly. With the continuous processing being considered as ‘back-in-the-game’, the question remains: Can the current perfusion technology compete or replace the conventional and widely preferred fed-batch technology?

    Two cases are discussed to compare the performance features of fed-batch and perfusion processes. In both the cases, the product output from perfusion process is significantly higher (2 to 5 folds) than that from fed-batch, due to combination of factors like higher cell density, higher cell specific productivity, lower accumulation of toxic metabolites etc. These cases demonstrate the potential of perfusion process in significantly increasing the product output. However, there are certain challenges and points to be considered before a company decides to switch to a perfusion platform. Some of these are highlighted in the article.
  • Single-Use Stainless Steel BioReactors: Quality Factors for Consideration When S Nov 8 2017 3:00 pm UTC 75 mins
    Dr Trevor Deeks, Principal and Consultant of Deeks Pharmaceutical Consulting Services, LLC
    Single-use (SU) systems are now in common use in pharmaceutical bioprocessing, as well as in other related technologies such as the manufacture of diagnostics and other biological products, and their popularity is increasing. Some types of SU systems have been in use for many decades now. The earliest SU systems being disposable filter cartridges that do not require a stainless steel (SS) filter housing. This present article seeks to focus in particular on SU bioreactors for cell culture and bacterial fermentation for the purpose of producing therapeutic proteins, monoclonal antibodies and vaccines. SU bioreactors are of particular value in early phase (Clinical Phases 1 and 2) GMP manufacturing. In some cases their use has now stretched through into commercial processing, albeit that the scale of operation is currently limited and in general the largest commercially available SU bioreactors are around 2000L working volume (WV). However, the small footprint that they require, and the reduction in investment needed for support services and utilities, means that the scale limitations can be overcome to a significant degree by having multiple SU bioreactors operating in parallel within a facility. The harvest from multiple bioreactors can be pooled for downstream processing, or each harvest can be processed as a separate batch, based upon considerations of the risks versus the economies of pooling.
  • Disposables – Suitability and Process Economy In Biopharmaceutical Manufacturing Nov 1 2017 2:00 pm UTC 75 mins
    Dr Joachim Walter
    Since the introduction of disposables and gaining popularity of Single-use Technology (SUT) for biopharmaceutical manufacturing there is nevertheless an ongoing controversial discussion on the advantages and disadvantages versus a conventional stainless steel environment.

    In a “classical” facility design any validation cost effort can easily be distributed to a considerable number of production runs thus contributing only to a non-decisive amount to the overall production costs. The scale for such plant is nearly unlimited as is the scale of operation. The “flexible” approach using disposables and single-use equipment offers significant advantages regarding changeover work and time thus a high throughput of different processes will definitely take profit as any cleaning and related validation and costly analytics doesn’t apply to a larger extent.

    Despite the potential benefits loudly advertised by the respective industry, these potential advantages derived from single-use equipment and disposables can be significantly diminished by lack of detailed process cost analysis, missing economic analysis and cost comparison between conventional and SU technologies as well as underestimating the cost of long term dependency on consumables. Due to missing appropriate standards, there is a widely non-compatibility between the equipment and consumables of the various suppliers, resulting in a strong dependence on the consumables of a single supplier once a single-use equipment has been purchased, curiously leaving some customers with surprise that they hardly have any room for price negotiations on the required consumables.
    This paper’s focus is on the very different arguments for the application of SU equipment and consumables, including advantages and limitations of SUT, understanding improvement of process robustness, contribution to lean production as well as environmental impact of disposables.
  • Characterisation of Host-Cell Proteins using Mass Spectrometry Enables Effective Oct 31 2017 2:00 pm UTC 75 mins
    Dr Li Zang
    Common mammalian cell lines used for biopharmaceutical production include Chinese Hamster Ovary (CHO), NS0 and Human Embryonic Kidney (HEK) cells. Each of these cell lines has been found with over 20,000 genes coded in their genome, which can result in over 10,000 proteins expressed at the same time in these cells. These proteins can be secreted from the living host cells or released to the cell culture supernatant upon lysis of the host cells during the cell culture. Biopharmaceuticals produced using these cell lines can be co-purified with a subset of the host-cell proteins (HCPs) in the cell culture supernatant.

    These co-purified HCPs are considered process-related impurities for biopharmaceuticals. The HCPs can cause potential safety risks by introducing anti-HCP response in the patients. Depending on the biological functions of the residual HCPs, other potential impacts reported include lowering the biopharmaceutical protein stability and affecting the efficacy of the biopharmaceutical protein by exacerbating the symptoms.
  • The Future of Pharmaceutical Manufacturing: Flexibility and Sustainability throu Oct 18 2017 2:00 pm UTC 75 mins
    Daniel O. Blackwood & Jeffrey Moriarty of Pfizer, Inc.
    Following a decade (or more) of concerted effort by industry, regulator, and academic groups, recent technology investments are now beginning to shape how medicines are being developed and manufactured for the global marketplace. While significant focus has highlighted the emergence of continuous manufacturing processes, three additional trends have also influenced and served as underlying drivers for these technology investments. First, the emergence of scientific advances in targeted biology has created high-value personalized medicines with smaller manufacturing volumes (doses/annum). Second, new regulatory pathways, such as the FDA’s Breakthrough Therapy designation, have accelerated the development and commercialization timelines for these new medicines. Finally, manufacturing localization has extended supply chain networks to serve globally-distributed patient populations throughout the world. Together, these drivers have served to shape the future of pharmaceutical development, manufacturing, and distribution of a variety of different dosage forms. The increasing need for product development speed and commercial supply flexibility through small-footprint, modular equipment trains will be highlighted within this paper, using an immediate-release solid oral dosage form example.
  • Advances in Mass Spectrometry for the Analysis and Bioanalysis of Antibody-Drug Sep 12 2017 2:00 pm UTC 75 mins
    Arnaud Delobel, PhD
    ADCs are complex compounds resulting from the coupling of cytotoxic small molecules to a monoclonal antibody. Their characterization as well as their bioanalysis (quantification in biological fluids) remains challenging. Mass spectrometry at different levels (intact, middle, peptide) can be a valuable tool, and can now be used in a regulated environment thanks to advances in both hardware and software.
  • New Paradigm of Building Quality during Manufacture - Challenges with Biologics Aug 23 2017 2:00 pm UTC 75 mins
    Dr Rajesh K. Gupta
    Historically, quality of biological products has been ensured through testing representative samples. Shift in quality paradigm started with implementation of Good Manufacturing Practice (GMP) regulations with current focus on building quality during manufacture. Inherent variability and complexity of biological products pose challenges in implementing Quality by design (QbD) concept. This presentation discusses ways to build quality during manufacture of biological products.
  • Modernizing Biopharmaceutical Manufacturing: From Batch to Continuous Production Jul 19 2017 2:00 pm UTC 75 mins
    Robert Dream
    The importance and value of continuous bioprocessing, both upstream and downstream has economic and sustainability advantages and due to the modular nature of continuous bioprocesses means that industry is able to adapt more rapidly to changing market demands. Continuous biopharmaceutical manufacturing in the context of other industries that have already successfully adopted continuous processing. Factor other than scientific ones, are the barriers to change from batch to continuous production. an excellent example of the manufacturing strategies of the steel industry in the 20th century, when this industrial sector incrementally switched from batch to continuous operations. biopharmaceutical industry has reached a stage that requires a change in the production paradigm. For a certain class of biopharmaceutical products upstream continuous manufacturing has always been applied: for example, unstable proteins that rapidly degrade in the culture broth. In order to obtain a high quality product, the residence time in the reactor must be minimized. This can only be achieved with continuous cultivation and preferably with perfusion reactors. a brief overview on the types of cell retention devices currently used in biopharmaceutical industry.
    Furthermore, this is a universal production platform that can be extended to other classes of products, such as antibodies, which are relatively stable molecules. continuous manufacturing is as productive and with a much smaller footprint of the manufacturing plant, avoiding multiple non-value added unit operations. In essence, the investment for a continuous plant is much smaller compared to a batch-operated one.
  • Implementing Single-Use PAT at seed stage to simplify cell culture operations Recorded: May 24 2017 35 mins
    Dr Jose R. Vallejos
    Single-Use Process Analytical Technologies (PAT) tools have a great potential to not only increase process understanding at the seed stage but also simplify cell culture operations. By utilizing PAT, the risk from bioburden or contamination can be significantly reduced and the overall operating efficiency increased. In fact, PAT also provides a data-driven platform to integrate Process Development and Manufacturing Operations that can mitigate risks associated with technology/process transfer.
  • Developing Practical Single-Use Processes for New Vaccine Formulations Recorded: May 16 2017 76 mins
    Kirsten Strahlendorf
    New vaccine process designs – and all the kinks that go with them – are typically hammered out in a small scale capacity, for example, prior to manufacturing for early phase human clinical trials. They are then upsized and further defined for industrial scale to supply the vast market. Single-use technologies (SUTs) have been a hot topic for several years now and their advantages well-known: easy product changeover, processing in lower classification areas, reduced CAPEX, elimination of glass, sterility assurance, to name a few. In vaccine manufacturing, SUTs are used throughout the processing stages, from cell culture all the way to filling. SUTs are quickly and conveniently designed, purchased and implemented for short-term manufacturing of clinical trial phase materials. Here a large percentage of new vaccines in Research and Development do not even make it to market.

    As the final production stages are critical as they are the last stages before patient injection, the scope of thisarticle covers SU applications involving drug substance formulations, adjuvant processing, final bulk formulation and filling. The actual process itself may include some or all of the following: filtration, pumping, ingredient addition, mixing, adsorption, filling, labelling, sampling and and storage.

    In this presentation only liquid formulations (“presentations”) will be discussed.
  • Single Use Systems in Biologics Manufacturing & their Impact on Operational Tech Recorded: Apr 4 2017 62 mins
    Gloria Gadea-Lopez, John Maguire, Mark Maselli & Ken Clapp
    The increased interest and adoption of single use systems (SUS) or disposables require that organizations rethink their operational business processes and the design and configuration of manufacturing execution systems (MES). Drawing from their previous experience implementing MES and SUS for biologics manufacturing, the authors discuss the key areas of impact of SUS on operational technology, outline new user requirements, and propose practical solutions for successful MES implementation.
  • Analytical Strategies for Comparability in Bioprocess Development Recorded: Mar 28 2017 71 mins
    Christine P. Chan, Ph.D & Joe Barco, Ph.D.
    Comparability exercises are commonly required at certain milestones during drug development as well as after product registration when changes are implemented into the manufacturing process. The goal is to evaluate if the product remains highly similar (not necessarily identical) before and after the change in terms of quality and stability and have no adverse impact on safety and efficacy predicted for the patients. This assessment requires product-specific knowledge gathered through drug development, taking a totality-of-evidence approach. The different levels of information are obtained from analytical studies for characterization of the molecule, animal studies for toxicity, pharmacokinetics and pharmacodynamics for pharmacological activities, and clinical studies for safety/tolerability, immunogenicity and efficacy. This Webinar discusses strategies and considerations for analytical characterization of protein structure and function which forms the foundation of the comparability demonstration.

    Sponsored by Unchained Labs

    Presentation Title: Limber up your lab with better tools for comparing biologics

    There’s no magic bullet when it comes to characterizing a protein by structure or function. Specific tests may work for one molecule but not the next. Instrumentation that provides a high degree of flexibility, balanced with low sample consumption and faster time to result, is crucial to keep up with ever changing laboratory needs. Unchained Labs puts biologics characterization front and center for our instrumentation development. We will discuss how our instruments let researchers be more flexible and efficient, while also providing clear data to help make comparability assessments.
  • Subvisible Particle Identification & Characterisation by Multi-Technique Methods Recorded: Feb 23 2017 61 mins
    Dr Jonas Hoeg Thygesen & Colin Merrifield
    Observable foreign and particulate matter has for a long time been recognized as a critical quality attribute for production of injectable protein formulations. Recently, a focus shift towards these particles and even smaller particles (particulate matter or subvisible particles) has been seen from the pharmaceutical industry, academia and the different regulatory bodies. Two of the central documents in this context are:

    1. The FDA Guidance for Industry on Immunogenicity Assessment for Therapeutic Protein Products1 and

    2. United States Pharmacopia Chapter 2
  • Challenges and Successes in Externalization of the ADC Supply Chain Recorded: Feb 14 2017 74 mins
    Firelli Alonso, Ph.D.
    Sourcing for the manufacture and control of Antibody-Drug Conjugates (ADCs) used in clinical trials requires strategic planning, establishment of a specialized support network, and execution of several interdependent tasks. ADCs are complex molecules, a fusion of a biological, the monoclonal antibody (mAb), and of small molecules, the linker and the toxic payload. Facilities of acceptable standards for the handling of high potency materials need to be engaged, and there is a limited supply currently. This is further complicated by the fact that there is not one contract facility that has fully integrated services, a “one-stop shop” capable of mAb production, linker and/or payload synthesis, conjugation of mAb to linker-payload to make the Drug Substance, and finally, formulation of the ADC to make the Drug Product. Strategizing the best outsourcing practices for producing and testing ADCs, and establishing guiding principles for externalization to ensure the selection of the right CMOs for ADC outsourcing and technology transfer, will be further discussed.
  • Continuous Bioprocessing: PAT for Process Monitoring & Control to enable RPR Recorded: Feb 7 2017 57 mins
    Jeff Doyle and Dr Paul Jeffers
    Continuous bioprocessing offers potential to enhance productivity and product quality uniformity while simultaneously decreasing facility footprint and associated operational overhead. Advances in technology and increasing commercial pressures are leading to an increased interest in continuous processing across the biopharmaceutical sector. A number of companies are exploring and advancing continuous bioprocessing and this presents a range of opportunity and challenges, including the use of Process Analytical Technology (PAT) for process characterization, process control, and process robustness, in support of a Rapid Product Release (RPR) strategy.
  • Pharmaceutical Manufacturing in the 21st Century-From Batch to Continuous Manuf Recorded: Jun 15 2016 76 mins
    Dr Sau (Larry) Lee & Dirk Leister
    The FDA’s Office of Pharmaceutical Quality (OPQ) is working to encourage the development and adoption of emerging technologies in the pharmaceutical industry that have potential to enhance drug product quality. To achieve this goal, OPQ established the emerging technology team (ETT) program and focuses on advancing regulatory science for emerging technologies. OPQ has identified Continuous Manufacturing as one such emerging technology which has the potential to increase the efficiency, flexibility, agility, and robustness of pharmaceutical manufacturing. The ETT provides industry early engagement opportunities with FDA to receive feedback on potential technical and regulatory issues and FDA’s recommendations for regulatory submission content related to continuous manufacturing and other emerging technologies. In addition, OPQ has started a regulatory science and research program on continuous manufacturing to address remaining gaps in our knowledge and experience. Our research program is currently focused on the following areas in (1) integrated process modeling, (2) understanding of the impact of material properties, and (3) implementation of advanced process control strategies and real time release testing. The results and knowledge developed in this program can be utilized to support the implementation of continuous manufacturing and to ensure that FDA regulatory policies reflect state-of-the-art manufacturing science.
  • Mass Spec - an Essential Tool for Characterization of mAbs during Development Recorded: Feb 3 2016 75 mins
    Dr Wei Xu & Dr Henry Shion
    Monoclonal antibodies (mAbs) represent a big portion of therapeutic proteins. Mass spectrometry (MS) coupled with modern separation technologies has become an essential tool in characterization of mAbs within the Quality by Design (QbD) paradigm during development. In this article, we use case studies to discuss the application of MS analysis in clone selection, optimization of fermentation conditions, development of purification and formulation. Specifically, simultaneously detect and monitor variants due to incomplete leader sequence processing, accurately determine afucosylation level of N-glycosylation, characterize host cell proteins (HCPs), identify degradation pathways and critical quality attributes (CQAs) will be discussed.
  • NIR In-Line Monitoring for Drug Product Continuous Process: From Understanding t Recorded: Jan 19 2016 59 mins
    Yang (Angela) Liu
    During the past decade, continuous processing has steadily gained traction within pharmaceutical industry. The smaller footprint, the reduction or minimization of technology transfer and overall flexibility of these systems generate the economic drivers for change. The advancement of technology, such as integration of process equipment and process analytical technology (PAT) enables concentrated process understanding and effective process control for these systems. There are an increasing number of joint efforts from industries, academia and regulatory agencies in this area. Continuous manufacturing implementations for commercial products are beginning to emerge as companies begin to turned this vision into reality.
    Among all the process analyzers, NIR is still one of the most widely used platform PAT tools in continuous processes. Some critical aspects should be considered for NIR (or other common PAT tools) implementation in continuous processes.
The Journal for Asia's Pharmaceutical and Biopharmaceutical Industry
BioPharma Asia aims to keep its 30,000 readers abreast of all developments in the areas of Drug Development, Drug Delivery, Manufacturing, Quality Assurance, Outsourcing and Regulatory Affairs, with only the highest quality articles, written by the most respected authors, associated with only end-user companies. This ensures that the information will always be guaranteed to remain timely, informative and above all totally unbiased.

Embed in website or blog

Successfully added emails: 0
Remove all
  • Title: A risk based approach to continuous processing
  • Live at: May 14 2015 8:00 am
  • Presented by: Rob Bowen
  • From:
Your email has been sent.
or close