Hi [[ session.user.profile.firstName ]]

Introduction to Gold Nanoparticles - Properties and Applications in Life Science

Gold nanoparticles are particles with diameters in the 1-100nm range and have unique optical and physical properties, the most pronounced being the intense absorbance and scattering of incident light at its surface plasmon resonance wavelength.

The optical properties of gold nanoparticles are governed by their morphology, i.e. size, shape and aggregation status. By precisely engineering particles with different morphologies and surface chemistries, these particles can be tuned to suit a variety of applications making them a very versatile research and diagnostic tool. For example, the gold nanoparticle surface can readily be functionalized with peptides, proteins and antibodies providing them with specificity toward cellular targets both in vitro and in vivo. In addition, modifying the surface with oligonucleotides enables them to be used for genetic detection. Common applications include their use in immunohistochemistry, bio imaging, biosensors, lateral flow assays, as cellular probes, and as vehicles for drug delivery.

This webinar will introduce the listener to the unique physical and optical properties of gold nanoparticles, basic surface modification strategies, and finally how they can be utilized in biomedical applications.
Recorded Sep 25 2014 44 mins
Your place is confirmed,
we'll send you email reminders
Presented by
Ben Pacheco, PhD (Cytodiagnostics), Logan Heinrich, MBA (Sigma-Aldrich)
Presentation preview: Introduction to Gold Nanoparticles - Properties and Applications in Life Science

Network with like-minded attendees

  • [[ session.user.profile.displayName ]]
    Add a photo
    • [[ session.user.profile.displayName ]]
    • [[ session.user.profile.jobTitle ]]
    • [[ session.user.profile.companyName ]]
    • [[ userProfileTemplateHelper.getLocation(session.user.profile) ]]
  • [[ card.displayName ]]
    • [[ card.displayName ]]
    • [[ card.jobTitle ]]
    • [[ card.companyName ]]
    • [[ userProfileTemplateHelper.getLocation(card) ]]
  • Channel
  • Channel profile
  • Overview of Certification Procedures for Organic Certified Reference Materials Sep 27 2018 2:00 pm UTC 75 mins
    Ingrid Hayenga, PhD & Markus Obkircher, PhD
    This webinar highlights the different certification procedures regarding organic standards.

    Certified reference materials (CRMs) are an important and essential part of quality assurance. Laboratories accredited according to ISO 17025 must use CRMs on a regular base to prove their quality.

    For organic compounds, only a very limited number of CRMs from metrological institutes are available, due to this the big challenge is traceability.


    In this webinar, you will learn:
    •The certification process of the organic standard solutions by qNMR from the point of view of a commercial producer of certified reference materials under ISO/IEC 17025 and ISO 17034 accreditation.
  • Overview of Certification Procedures for Organic Certified Reference Materials Sep 27 2018 6:00 am UTC 75 mins
    Ingrid Hayenga, PhD & Markus Obkircher, PhD
    his webinar highlights the different certification procedures regarding organic standards.

    Certified reference materials (CRMs) are an important and essential part of quality assurance. Laboratories accredited according to ISO 17025 must use CRMs on a regular base to prove their quality.

    For organic compounds, only a very limited number of CRMs from metrological institutes are available, due to this the big challenge is traceability.


    In this webinar, you will learn:
    •The certification process of the organic standard solutions by qNMR from the point of view of a commercial producer of certified reference materials under ISO/IEC 17025 and ISO 17034 accreditation.
  • More on the Unique Selectivity of Ionic Liquid GC Stationary Phases Jun 7 2018 3:00 pm UTC 75 mins
    Len Sidisky
    Over the years, extensive evaluations of columns manufactured with ionic liquid stationary phases have occurred. Their main strength was discovered to be unique selectivity. This selectivity is made possible due to the various combinations of cations and anions that are available along with spacer groups used to prepare these germinal
    dicationic phases. Columns prepared with di- or tricationic phases have the ability to perform many of the same applications as columns made with polysiloxane polymer or polyethylene glycol stationary phases of similar polarity, but with slight elution order changes. Many times this results in increased resolution and/or shorter run times. This webinar will compare and contrast the selectivity of the ionic liquids stationary phases with
    traditional phases of similar or like selectivity’s for applications with a
    variety of different sample types from a number of industries including
    petrochemical, pharmaceutical, environmental, food and beverage and flavor and fragrance.
  • Custom Assay Development & Services utilizing Single Molecule Counting (SMC™)2 May 24 2018 12:30 am UTC 75 mins
    Sarah Hamren, Head of Custom Assays & Sample Testing, Merck KGaA, Darmstadt, Germany
    Single molecule counting (SMC™) technology enables precise measurement of molecules at levels previously undetectable, down to the femtogram/mL levels, allowing researchers to identify new biomarkers, or assist in therapeutic development with an improved view of efficacy, safety & time course studies. When time and resources are limited, Merck KGaA offers a comprehensive portfolio of Custom Services supported by a scientific team with core expertise in SMC™ technology. Learn how our team will partner with you to develop a project specific to your requirements, whether that is fit-for-purpose sample testing, biomarker analysis using our current SMC™ immunoassays, or development and manufacture of an immunoassay for your novel target of interest. Learn how we work with our clients to define and tailor a customized project plan that includes milestone driven tasks, collaborative data review and progress reports. Whether your focus is to expedite your clinical research or to transfer a method to a CRO, we will show you how our services can help you accelerate programs from discovery into clinical trials.
  • Custom Assay Development and Services utilizing Single Molecule Counting (SMC™) May 23 2018 2:00 pm UTC 75 mins
    Sarah Hamren, Head of Custom Assays & Sample Testing, Merck KGaA, Darmstadt, Germany
    Single molecule counting (SMC™) technology enables precise measurement of molecules at levels previously undetectable, down to the femtogram/mL levels, allowing researchers to identify new biomarkers, or assist in therapeutic development with an improved view of efficacy, safety & time course studies. When time and resources are limited, Merck KGaA offers a comprehensive portfolio of Custom Services supported by a scientific team with core expertise in SMC™ technology. Learn how our team will partner with you to develop a project specific to your requirements, whether that is fit-for-purpose sample testing, biomarker analysis using our current SMC™ immunoassays, or development and manufacture of an immunoassay for your novel target of interest. Learn how we work with our clients to define and tailor a customized project plan that includes milestone driven tasks, collaborative data review and progress reports. Whether your focus is to expedite your clinical research or to transfer a method to a CRO, we will show you how our services can help you accelerate programs from discovery into clinical trials.
  • Precision genome editing in macrophage and CD8+ human primary T cells for immuno May 22 2018 5:00 pm UTC 75 mins
    Laura Daley, PhD
    Innate immune cells play a critical role in cell-mediated immunity and have the potential to serve as cell-based therapies to treat a broad spectrum of immune diseases such as cancer and autoimmune disorders. Modified immune cells, such as genetically engineered CAR-T cells, have proven to be critical in developing new cell-based therapies for these diseases. However, immune cell biology creates challenges during the gene-editing process that lead to hyper-regulated RNA and DNA sensing pathways and enhanced cell death upon introduction of exogenous ribonucleotides. Further, engineering in primary immune cells is often restricted due to their limited expansion capacity. Genetic engineering in immune cells has traditionally relied on random integration of gene-editing components using viral delivery systems. In contrast, genome editing mediated by nucleases, such as CRISPR/Cas9-single guide RNPs, provide a platform for precision editing, and alleviate the potential side effects caused by randomly integrated viral DNA. While RNP gene editing in immune cells is just beginning to be considered by the immune-therapeutics field, our recent advances demonstrate that this approach can be used to create targeted modifications in two key cell types, the macrophage and the CD8+ primary T-cell. In an effort to circumvent challenges with the finite lifespan of primary T-cells, we targeted genes to edit that rendered this cell type “pseudo-immortalized”, allowing additional passages for further downstream genome editing and propagation. In addition, we demonstrated that precision editing can be used to introduce disease relevant SNPs into the macrophage genome, which resist introduction of exogenous ribonucleotides due to the induction of apoptotic pathways. Advances such as these overcome many of the obstacles currently faced with immune cell editing and offer improved gene stability and expression in immune cells and will transform the Immuno-Oncology and Gene Therapy fields.
  • Precision genome editing in macrophage and CD8+ human primary T cells for immuno May 22 2018 1:00 pm UTC 75 mins
    Laura Daley, PhD
    Innate immune cells play a critical role in cell-mediated immunity and have the potential to serve as cell-based therapies to treat a broad spectrum of immune diseases such as cancer and autoimmune disorders. Modified immune cells, such as genetically engineered CAR-T cells, have proven to be critical in developing new cell-based therapies for these diseases. However, immune cell biology creates challenges during the gene-editing process that lead to hyper-regulated RNA and DNA sensing pathways and enhanced cell death upon introduction of exogenous ribonucleotides. Further, engineering in primary immune cells is often restricted due to their limited expansion capacity. Genetic engineering in immune cells has traditionally relied on random integration of gene-editing components using viral delivery systems. In contrast, genome editing mediated by nucleases, such as CRISPR/Cas9-single guide RNPs, provide a platform for precision editing, and alleviate the potential side effects caused by randomly integrated viral DNA. While RNP gene editing in immune cells is just beginning to be considered by the immune-therapeutics field, our recent advances demonstrate that this approach can be used to create targeted modifications in two key cell types, the macrophage and the CD8+ primary T-cell. In an effort to circumvent challenges with the finite lifespan of primary T-cells, we targeted genes to edit that rendered this cell type “pseudo-immortalized”, allowing additional passages for further downstream genome editing and propagation. In addition, we demonstrated that precision editing can be used to introduce disease relevant SNPs into the macrophage genome, which resist introduction of exogenous ribonucleotides due to the induction of apoptotic pathways. Advances such as these overcome many of the obstacles currently faced with immune cell editing and offer improved gene stability and expression in immune cells and will transform the Immuno-Oncology and Gene Therapy fields.
  • Knockdown, Knockout, Validate: Lentivirus delivers payload in vitro and in vivo May 16 2018 3:00 pm UTC 75 mins
    Christy Hoffmann
    Whether you are looking to knockout, knockdown, or overexpress genes, lentiviral transduction is the superior mechanism for delivering genetic cargo into hard to transfect cells and in vivo systems. Lentivirus is a perfect tool for screening applications since the delivered genetic material is constitutively expressed by the cells long-term. We will discuss the flexibility of our expert manufacturing group and present examples of applications suitable with lentivirus.

    During this webinar, we dispel the preconceived misconception that lentivirus is risky or cumbersome to use. As a trusted lentiviral manufacturer, we will share our best practices for handling lentivirus and the simple steps that set you up for success.
  • Emerging biomarkers for the diagnosis of cardiac pathologies May 15 2018 3:00 pm UTC 75 mins
    Rich Triglia
    According to the World Health Organization (WHO) cardiovascular diseases (CVD’s) are the leading cause of death accounting for more than 17.3M deaths globally. Modern cardiac diagnostics tests and monitoring techniques are providing ever increasing insight into the health of the human heart. In this presentation we examine some of the new and emerging cardiac biomarkers that could complement existing diagnostic and prognostic methods and have the potential to revolutionize our current understanding of cardiac health.
  • Lymphomas and Leukemias Apr 27 2018 3:00 pm UTC 75 mins
    Jeff Gordon
    Leukemia and lymphoma are hematologic neoplasms that affect members of all age groups. Each year, over 140,000 people in the US are diagnosed with a hematologic malignancy of some kind. With constant advancement of treatment options, the importance of accurate diagnosis and detection of lymphomas and leukemias becomes more and more relevant to the survival of the patient, and immunohistochemistry has served as a key auxiliary test in determining these diagnoses. This presentation covers many of the basic science, facts, and statistics of hematologic malignancies, as well as the utility of immunohistochemical testing with markers such as CD20, PAX-5, CD61, CD71, Cyclin D1, and SOX-11 in the accurate diagnosis and survival rates of lymphoma and leukemia.
  • Generation of a landing-pad T cell line useful for T cell receptor customization Recorded: Apr 18 2018 49 mins
    Stacey Ward, PhD
    T cell biology is integral to the study of normal immune regulation as well as cancer biology, Car-T cells, epitope specificity and antigen presentation. However, primary T cells can be difficult to propagate in culture for the length of time necessary for functional assays. In addition, primary T cells express variant T cell receptor (TCR) heterodimers that can be challenging to identify and may not be optimal for downstream studies. We sought to simplify this system using transformed T cells which can be grown in culture for extended periods of time. We engineered a floxed landing pad sequence into the safe harbor AAVS1 genetic locus using CompoZr zinc finger nucleases. Both the promoter and landing pad expression cassette are flanked by unique lox sites, allowing swapping of either the promoter and/or expression cassette as needed. We ensured that only one copy of this sequence was found within the genome to avoid any complications associated with random insertion events. We also generated a landing pad cell line null for the endogenous TCR using Cas9/CRISPR ribonucleotide complexes. Both the TCR alpha and beta loci were rendered null due to non-homologous end joining and the presence of insertions and deletions culminating in premature stop codons were genotyped using next generation sequencing. The absence of a functional TCR was validated using flow cytometry staining for surface TCR and CD3. This cell line was then used to generate a knock-in of the desired exogenous TCR heterodimer to the landing pad locus, verified using flow cytometry staining. These lines will be very useful for a multitude of studies where a researcher needs to express a gene of interest in a discrete genetic locus or wants to generate a panel of TCR expressing cell lines.
  • Generation of a landing-pad T cell line useful for T cell receptor customization Recorded: Apr 17 2018 45 mins
    Stacey Ward, PhD
    T cell biology is integral to the study of normal immune regulation as well as cancer biology, Car-T cells, epitope specificity and antigen presentation. However, primary T cells can be difficult to propagate in culture for the length of time necessary for functional assays. In addition, primary T cells express variant T cell receptor (TCR) heterodimers that can be challenging to identify and may not be optimal for downstream studies. We sought to simplify this system using transformed T cells which can be grown in culture for extended periods of time. We engineered a floxed landing pad sequence into the safe harbor AAVS1 genetic locus using CompoZr zinc finger nucleases. Both the promoter and landing pad expression cassette are flanked by unique lox sites, allowing swapping of either the promoter and/or expression cassette as needed. We ensured that only one copy of this sequence was found within the genome to avoid any complications associated with random insertion events. We also generated a landing pad cell line null for the endogenous TCR using Cas9/CRISPR ribonucleotide complexes. Both the TCR alpha and beta loci were rendered null due to non-homologous end joining and the presence of insertions and deletions culminating in premature stop codons were genotyped using next generation sequencing. The absence of a functional TCR was validated using flow cytometry staining for surface TCR and CD3. This cell line was then used to generate a knock-in of the desired exogenous TCR heterodimer to the landing pad locus, verified using flow cytometry staining. These lines will be very useful for a multitude of studies where a researcher needs to express a gene of interest in a discrete genetic locus or wants to generate a panel of TCR expressing cell lines.
  • In Vitro Transporter Models for ADME-Tox Research Recorded: Apr 10 2018 62 mins
    Joseph Zolnerciks, Ph.D.
    Drug transporters play a pivotal role in mediating the disposition of many drugs. As a result, researchers in the fields of drug discovery and development have shown a steadily rising level of interest in transporter-drug interactions, transporter-mediated drug-drug interactions, and the role of transporters in determining drug toxicity. For the past 18 years, SOLVO Biotechnology has pioneered the development and commercialization of in vitro assay systems to enable the study of drug transporters. One such system commonly employed for this purpose are inside-out membrane vesicles. Generated from cells over-expressing a transporter of interest, these membranes can be used to examine members of the ATP-Binding Cassette (ABC) transporter family, which includes P-glycoprotein (P-gp; MDR1), bile salt export pump (BSEP), breast cancer resistance protein (BCRP), and the multidrug resistance-associated proteins (MRPs). A versatile assay system, transporter-drug interactions can be monitored indirectly using ATPase measurements, or by directly measuring substrate transport using fluorescent or radiolabeled compounds, or by LC-MS detection. The advantages and limitations of this assay system will be discussed, and we will detail how inhibition of transporters involved in bile acid homeostasis is being used for predictive drug-induced liver injury (DILI) studies. In addition, we will examine the role that the lipid composition within the membrane plays on transporter activity within the context of the latest range of SOLVO mammalian membrane vesicles products for transporter research.
  • Filtration in Dissolution Testing: Improving Throughput and Reducing Variability Recorded: Apr 2 2018 53 mins
    Vivek Joshi, Ph.D.
    In vitro dissolution testing is used to characterize drug compounds throughout their development. In early drug development it is used to support the choice of a particular formulation. During drug production it is a critical component of the quality control process and is used to assess the changes in manufacturing processes or formulation. In order for dissolution results to be meaningful at each stage, the test and the process need to be reliable, consistent, predictive and accurate.

    Filtration as the only sample preparation step plays an important role in the dissolution process, yet this step is often taken for granted. The choice of frits or syringe filters is often based on experience with previous formulations or availability in the lab. Selecting the wrong filter can result in inadequate filtration, low analyte recovery, solvent incompatibility or extractables that reduce accuracy and reproducibility. The wrong pore size or device can result in clogging that can adversely affect throughput and sample processing.

    This seminar describes different membrane characteristics and provides guidance in selecting the right filtration devices for sample preparation following in vitro dissolution. Problems that result from using the wrong filter are presented along with steps one can take to solve each problem. Filter characteristics that affect drug recovery and downstream analysis, such as non-specific binding and extractable levels, are presented. Steps one can take to optimize throughput and reduce downtime are addressed including a discussion on membrane properties and guidance on the use of multi-layer and automation compatible filters. Recommendations are presented for choosing the right sample preparation device that will help improve throughput, reduce sample processing time and enhance test accuracy and reproducibility.
  • Basics of Immunohistochemistry Recorded: Mar 30 2018 72 mins
    Jeff Gordon, OEM Sales, Merck KGaA, Darmstadt, Germany
    Immunohistochemistry is the technology of detecting cellular and infectious agent proteins in tissue with antibodies and then labeling those antibodies with a chromogen so that they are detectable under a light microscope. This science has become a standard method in diagnostics for classifying neoplasms and detecting infectious microbes. The science and technique behind immunohistochemistry are discussed in this webinar.
  • Strat-M® membrane for formulation optimization Recorded: Mar 29 2018 38 mins
    Vivek Joshi, Ph.D.
    This webinar provides data on the applicability of a synthetic membrane for in-vitro diffusion studies in the transdermal arena in place of human or animal skin as a model. Applicability of synthetic membrane in formulation rank ordering is discussed. Advantages and disadvantages of biological models used in diffusion studies are also discussed.
  • Nano- and Microfabricated Hydrogels for Regenerative Engineering Recorded: Mar 15 2018 66 mins
    Ali Khademhosseini, PhD
    Engineered materials that integrate advances in polymer chemistry, nanotechnology, and biological sciences have the potential to create powerful medical therapies. Our group aims to engineer tissue regenerative therapies using water-containing polymer networks, called hydrogels, that can regulate cell behavior. Specifically, we have developed photocrosslinkable hybrid hydrogels that combine natural biomolecules with nanoparticles to regulate the chemical, biological, mechanical and electrical properties of gels. These functional scaffolds induce the differentiation of stem cells to desired cell types and direct the formation of vascularized heart or bone tissues. Since tissue function is highly dependent on architecture, we have also used microfabrication methods, such as microfluidics, photolithography, bioprinting, and molding, to regulate the architecture of these materials. We have employed these strategies to generate miniaturized tissues. To create tissue complexity, we have also developed directed assembly techniques to compile small tissue modules into larger constructs. It is anticipated that such approaches will lead to the development of next-generation regenerative therapeutics and biomedical devices.
  • Lighten Up! Long-term imaging with ultra-bright, organic AIE cell trackers Recorded: Feb 22 2018 31 mins
    Liu Bin, PhD,Department Head - Department of Chemical and Biomolecular Engineering, National University of Singapore
    With the recent discovery of a special class of organic compounds with aggregation-induced emission (AIE) characteristics, new opportunities have opened for in vitro and in vivo imaging. In combination with advanced polymer encapsulation technologies, AIE compounds are now available as LuminiCell ultra-bright, organic nanoparticles that enable long-term cell tracking and imaging for applications such as cancer research and stem cell biology.
  • Need to judge your product? Use HPTLC to get insights into sample composition-S2 Recorded: Feb 20 2018 56 mins
    Melanie Broszat, PhD CAMAG, Muttenz, Switzerland & Michaela Oberle Merck KGaA, Darmstadt, Germany
    Thin-Layer Chromatography has been a well-known method for analysis of botanicals and other complex samples since the end of the 1930s. Today’s modern thin-layer chromatography combines the advantage of analytical robustness and high sample throughput with the possibility to use all kind of specific detection methods, e.g. classical UV/Vis/Fluorescence detection, mass spectrometry or effect-directed analysis. This method increases the amount of information for a fast and efficient screening for new compounds and the identification of raw materials especially for samples with a high matrix load such as herbal drugs, cosmetic and food samples.
    HPTLC, the most advanced form of Thin-Layer Chromatography, is a powerful yet simple and cost effective tool for testing identity, purity, and strength (content) of botanicals as well as excluding adulteration during quality control. With the publication of general chapters by the United States Pharmacopoeia (USP ) and European Pharmacopoeia (Ph.Eur. 2.8.25) HPTLC has officially come into existence as a highly standardized and therefore reproducible analytical technique. The use of high performance plates, suitable instrument and software, a standardized methodology, and validated methods ensures reliable results that are fully compliant with current Good Manufacturing Practice (cGMP). HPTLC fingerprints allow convenient visual comparison of multiple samples even if those originate from different plates (and different laboratories worldwide). Reference images (HPTLC fingerprints of botanical reference materials or other references) can be used to qualify data and pass/fail samples based on similarity or difference.
    We will give you an overview about the versatility of HPTLC, applicable to many of your analytical tasks. Don’t miss the chance to extend your knowledge!
  • Need to judge your product? Use HPTLC to get insights into sample composition Recorded: Feb 20 2018 52 mins
    Melanie Broszat, PhD CAMAG, Muttenz, Switzerland & Michaela Oberle Merck KGaA, Darmstadt, Germany
    Thin-Layer Chromatography has been a well-known method for analysis of botanicals and other complex samples since the end of the 1930s. Today’s modern thin-layer chromatography combines the advantage of analytical robustness and high sample throughput with the possibility to use all kind of specific detection methods, e.g. classical UV/Vis/Fluorescence detection, mass spectrometry or effect-directed analysis. This method increases the amount of information for a fast and efficient screening for new compounds and the identification of raw materials especially for samples with a high matrix load such as herbal drugs, cosmetic and food samples.
    HPTLC, the most advanced form of Thin-Layer Chromatography, is a powerful yet simple and cost effective tool for testing identity, purity, and strength (content) of botanicals as well as excluding adulteration during quality control. With the publication of general chapters by the United States Pharmacopoeia (USP ) and European Pharmacopoeia (Ph.Eur. 2.8.25) HPTLC has officially come into existence as a highly standardized and therefore reproducible analytical technique. The use of high performance plates, suitable instrument and software, a standardized methodology, and validated methods ensures reliable results that are fully compliant with current Good Manufacturing Practice (cGMP). HPTLC fingerprints allow convenient visual comparison of multiple samples even if those originate from different plates (and different laboratories worldwide). Reference images (HPTLC fingerprints of botanical reference materials or other references) can be used to qualify data and pass/fail samples based on similarity or difference.
    We will give you an overview about the versatility of HPTLC, applicable to many of your analytical tasks. Don’t miss the chance to extend your knowledge!
Focusing on new / innovative technologies and industry challenges
The Life Science Business of Merck KGaA, Darmstadt, Germany Webinar Channel features scientific presentations from key specialists in analytical chemistry, biology, chemistry and life sciences on the practical and technical aspects of new developments and innovations, to help advance your research.

Embed in website or blog

Successfully added emails: 0
Remove all
  • Title: Introduction to Gold Nanoparticles - Properties and Applications in Life Science
  • Live at: Sep 25 2014 3:00 pm
  • Presented by: Ben Pacheco, PhD (Cytodiagnostics), Logan Heinrich, MBA (Sigma-Aldrich)
  • From:
Your email has been sent.
or close