InfoTechTarget and Informa Tech's Digital Businesses Combine.

Together, we power an unparalleled network of 220+ online properties covering 10,000+ granular topics, serving an audience of 50+ million professionals with original, objective content from trusted sources. We help you gain critical insights and make more informed decisions across your business priorities.

Spark Performance Tuning on Kubernetes Best Practices (Part 2)

Presented by

Alex Pierce

About this talk

Running Spark on Kubernetes in a stable, performant, cost-efficient, and secure manner presents complex challenges. Spark performance tuning on Kubernetes ensures you get the best performance by optimizing system resources and tuning configurations. Join Pepperdata Field Engineer Alex Pierce as he discusses how to reduce the complexity of monitoring and managing Spark on Kubernetes with autonomous optimization and full-stack observability. Topics include: • Automation and observability for lowering costs and improving performance • Deploying, managing, monitoring, and simplifying Spark on Kubernetes: big data application monitoring, platform monitoring, and dynamic optimization • Configuring for performance and efficiency • Spark app-level dynamic allocation and cluster level autoscaling • What Spark on Kubernetes performance success looks like
Pepperdata

Pepperdata

6421 subscribers3 talks
Real-time, automated cloud cost optimization with no manual tuning
Pepperdata Capacity Optimizer delivers 30-47% greater cost savings for data-intensive workloads, eliminating the need for manual tuning by optimizing CPU and memory in real time with no application changes. Pepperdata pays for itself, immediately decreasing instance hours/waste, increasing utilization, and freeing developers from manual tuning to focus on innovation.
Related topics