Semantic Natural Language Understanding w/ Spark, ML Annotators & DL Ontologies

Presented by

David Talby, CTO, Pacific AI

About this talk

A text-mining system must go way beyond indexing and search to appear truly intelligent. First, it should understand language beyond keyword matching. (e.g. distinguishing between “Jane has the flu,” “Jane may have the flu,” “Jane is concerned about the flu," “Jane’s sister has the flu, but she doesn’t,” or “Jane had the flu when she was 9” is of critical importance.) This is a natural language processing problem. Second, it should “read between the lines” and make likely inferences even if they’re not explicitly written. (e.g. if Jane has had a fever, a headache, fatigue, and a runny nose for three days, not as part of an ongoing condition, then she likely has the flu.) This is a semisupervised ML problem. Third, it should automatically learn the right contextual inferences to make. (e.g. learning on its own that fatigue is sometimes a flu symptom—only because it appears in many diagnosed patients—without a human ever explicitly stating that rule.) This is an association-mining problem, which can be tackled via deep learning or via more guided ML techniques. David Talby leads a live demo of an end-to-end system that makes nontrivial clinical inferences from free-text patient records and provides real-time inferencing at scale. The architecture is built out of open source big data components: Kafka and Spark Streaming for real-time data ingestion and processing, Spark for modeling, and Elasticsearch for enabling low-latency access to results. The data science components include spaCy, a pipeline with custom annotators, machine-learning models for implicit inferences, and dynamic ontologies for representing and learning new relationships between concepts.

Related topics:

More from this channel

Upcoming talks (0)
On-demand talks (135)
Subscribers (22107)
This channel covers the advent of artificial intelligence in business and society. Join the discussion with webinars and videos covering everything from neural networks, to computer vision and NLP, to machine learning and AI application in the real world.