How to Approach a Multi-Class (classification) Problem

Presented by

Ashrith Barthur, Chief Security Scientist at

About this talk

Ashrith's talk will show how to approach a multi-class (classification) problem using H2O. The data that is being used is an aggregated log of multiple systems that are constantly providing information about their status, connections and traffic. In large organizations, these log datasets can be very huge and unidentifiable due to the number of sources, legacy systems etc. In our example, we use a created response for each source. The use H2O to classify the source of data. Ashrith Barthur is a Security Scientist at H2O currently working on algorithms that detect anomalous behaviour in user activities, network traffic, attacks, financial fraud and global money movement. He has a PhD from Purdue University in the field of information security, specialized in Anomalous behaviour in DNS protocol.

Related topics:

More from this channel

Upcoming talks (0)
On-demand talks (111)
Subscribers (19203) is the maker of H2O, the world's best machine learning platform and Driverless AI, which automates machine learning. H2O is used by over 200,000 data scientists and more than 18,000 organizations globally. H2O Driverless AI does auto feature engineering and can achieve 40x speed-ups on GPUs.