Automatic Visualization with Driverless AI

Presented by

Leland Wilkinson

About this talk

We wish to read datasets (text, logs, relational tables, hierarchies, streams, images, ...) and display interesting aspects of their content. The design to do this rests on the grammar of graphics, scagnostics, and a modeler based on the logic of statistical analysis. We distinguish an automatic visualization system (AVS) from an automated visualization system. The former automatically makes decisions about what is to be visualized. The latter is a programming system for automating the production of charts, graphs and visualizations. An AVS is designed to provide a first glance at data before modeling and analysis are done. AVS is designed to protect researchers from ignoring missing data, outliers, miscodes and other anomalies that can violate statistical assumptions or otherwise jeopardize the validity of models. This webinar will cover the theory and operation of the AutoViz implementation of AVS inside Driverless AI. Leland's Bio: Leland Wilkinson is Chief Scientist at H2O and Adjunct Professor of Computer Science at the University of Illinois Chicago. He received an A.B. degree from Harvard in 1966, an S.T.B. degree from Harvard Divinity School in 1969, and a Ph.D. from Yale in 1975. Wilkinson wrote the SYSTAT statistical package and founded SYSTAT Inc. in 1984. After the company grew to 50 employees, he sold SYSTAT to SPSS in 1994 and worked there for ten years on research and development of visualization systems. Wilkinson subsequently worked at Skytree and Tableau before joining H2O.

Related topics:

More from this channel

Upcoming talks (0)
On-demand talks (111)
Subscribers (19200)
H2O.ai is the maker of H2O, the world's best machine learning platform and Driverless AI, which automates machine learning. H2O is used by over 200,000 data scientists and more than 18,000 organizations globally. H2O Driverless AI does auto feature engineering and can achieve 40x speed-ups on GPUs.