Automatic Model Documentation with H2O

Presented by

Lauren DiPerna, Data Scientist at

About this talk

For many companies, model documentation is a requirement for any model to be used in the business. For other companies, model documentation is part of a data science team’s best practices. Model documentation includes how a model was created, training and test data characteristics, what alternatives were considered, how the model was evaluated, and information on model performance. Collecting and documenting this information can take a data scientist days to complete for each model. The model document needs to be comprehensive and consistent across various projects. The process of creating this documentation is tedious for the data scientist and wasteful for the business because the data scientist could be using that time to build additional models and create more value. Inconsistent or inaccurate model documentation can be an issue for model validation, governance, and regulatory compliance. Join us on Tuesday, June 30th, to learn how to create comprehensive, high-quality model documentation in minutes that saves time, increases productivity, and improves model governance.
Related topics:

More from this channel

Upcoming talks (0)
On-demand talks (41)
Subscribers (19208) is the maker of H2O, the world's best machine learning platform and Driverless AI, which automates machine learning. H2O is used by over 200,000 data scientists and more than 18,000 organizations globally. H2O Driverless AI does auto feature engineering and can achieve 40x speed-ups on GPUs.