Operationalizing machine learning for SIEM

Presented by

Mike Paquette, Director of Product, Elastic & Neil Desai, Security specialist, Elastic

About this talk

Unsupervised machine learning (ML) is a core capability for most security operations teams looking to implement an advanced threat detection or insider threat program. However, the deployment of ML can present adoption challenges for security teams. Unless they have in-house data scientists to develop and tune threat models and skilled threat hunters to investigate alerts and manually follow up on interpreting anomalous behaviors, teams may find themselves struggling to gain useful insights and operational value out of ML tools. See how a “fully operationalized” approach to ML can set your team up for success. You will learn the following, as presented and demonstrated in the context of real-world examples and scenarios.

Related topics:

About this channel

Elastic logo
Upcoming talks (21)
On-demand talks (50)
Subscribers (9979)
Watch and learn from experts, developers, and real-world Elastic users. Sign up to join us live, because there's nothing like being in the (virtual) room where it happens.