Death of the Star Schema

Logo
Presented by

Incorta

About this talk

Relational databases in the 1980s were typically designed using the Codd-Date rules for data normalization. It was the most efficient way to store data used in operations. As BI and multi-dimensional analysis became popular, the relational databases began to have performance issues when multiple joins were requested. The development of the star schema was a clever way to get around performance issues and ensure that multi-dimensional queries could be resolved quickly. But this design came with its own set of problems. Unfortunately, the analytic process is never simple. Business users always think up unimaginable ways to query the data. And the data itself often changes in unpredictable ways. These result in the need for new dimensions, new and mostly redundant star schemas and their indexes, maintenance difficulties in handling slowly changing dimensions, and other problems causing the analytical environment to become overly complex, very difficult to maintain, long delays in new capabilities, resulting in an unsatisfactory environment for both the users and those maintaining it. There must be a better way! Attend this webinar to learn: - The three technological advances in data storage that eliminate star schemas - How these innovation benefit analytical environments - The steps you will need to take to reap the benefits of being star schema-free!
Related topics:

More from this channel

Upcoming talks (0)
On-demand talks (32)
Subscribers (5563)
Data Science Central is the industry's online resource for data practitioners. From Statistics to Analytics to Machine Learning to AI, Data Science Central provides a community experience that includes a rich editorial platform, social interaction, forum-based support, plus the latest information on technology, tools, trends, and careers.