Hi [[ session.user.profile.firstName ]]

Expert Insights: Expanding the Data Center with FCoE

As virtualization continues to evolve and data centers become more dynamic than ever, IT leaders are exploring ways to put in place a storage environment that can keep pace. Is FCoE (Fibre Channel over Ethernet) the answer? Expanding the conversation from our February Webcast, “Use Cases for iSCSI and FCoE,” this live SNIA Webcast examines the current state of FCoE and looks at how this protocol can expand the agility of the data center. Find out where and when FCoE shines and hear our experts discuss:

•Using FCoE as a storage overlay
•40GbE and 100GbE – How much throughput do you need?
•Single-hop, multi-hop and beyond
•OpenStack, Network Functions Virtualization (NFV), and FCoE
•Cost justifications and real-world use cases
Recorded Aug 20 2014 51 mins
Your place is confirmed,
we'll send you email reminders
Presented by
SNIA ESF
Presentation preview: Expert Insights: Expanding the Data Center with FCoE

Network with like-minded attendees

  • [[ session.user.profile.displayName ]]
    Add a photo
    • [[ session.user.profile.displayName ]]
    • [[ session.user.profile.jobTitle ]]
    • [[ session.user.profile.companyName ]]
    • [[ userProfileTemplateHelper.getLocation(session.user.profile) ]]
  • [[ card.displayName ]]
    • [[ card.displayName ]]
    • [[ card.jobTitle ]]
    • [[ card.companyName ]]
    • [[ userProfileTemplateHelper.getLocation(card) ]]
  • Channel
  • Channel profile
  • Revving Up Storage for Automotive Dec 7 2021 6:00 pm UTC 60 mins
    Ryan Suzuki, Samsung; John Kim, NVIDIA, Tom Friend, Illuminosi
    The automotive industry is effectively transforming the vehicle into a data center on wheels. Connectedness, autonomous driving, and media & entertainment bring in more and more storage onboard and into the networked data centers. But all the storage in (and for) a car is not created equal. There are 10s if not 100s of different processors on the car. Some are attached to storage and some are not. Each application demands different characteristics from the storage device. Let’s explore all of this in an informational journey with the industry experts from both the storage and automotive worlds.

    • What’s driving growth in automotive storage?
    • Special requirements for autonomous vehicles
    • Where automotive data is typically stored?
    • Special use cases
    • Vehicle networking & compute changes and challenges
  • Object Storage: Trends, Use Cases Nov 16 2021 6:00 pm UTC 60 mins
    David McIntyre, Samsung; Jon Toor, Cloudian; Alex McDonald, SNIA; Christine McMonigal, Intel
    Storing objects has become commonplace. Object storage provides bulk and undifferentiated storage for unstructured data like photos, video & audio, DNA sequences, files, backups, and it can even protect against ransomware. Object access is also simplified because there are no built-in hierarchies or filesystems of objects, and no devices to manage that look like disks.

    So, what’s new? Object storage has traditionally been accomplished in the software stack and is now being accomplished directly on the media. In this presentation, we’ll highlight how this is happening and discuss:

    • Object storage characteristics
    • The differences and similarities between object and key value storage
    • Security options unique to object storage including ransomware mitigation
    • Why use object storage: Use cases and applications
    • Object storage and containers: Why Kubernetes’ COSI (Container Object Storage Interface)?
  • NVMe-oF: Discovery Automation for NVMe IP-based SANs Nov 4 2021 7:00 pm UTC 60 mins
    Erik Smith, Dell Technologies; Fred Knight, NetApp; Curtis Ballard, HPE; Tom Friend, Illuminosi
    NVMe® IP-based SANs (including TCP, RoCE, iWARP) have the potential to provide significant benefits in application environments ranging from the Edge to the Data Center. However, before we can fully unlock NVMe IP-based SAN’s potential, we first need to overcome the NVMe over Fabrics (NVMe-oF™) discovery problem. This discovery problem, specific to IP based fabrics, can result in the need for Host administrators to explicitly configure each Host to access each of the NVM subsystems in their environment. In addition, any time an NVM Subsystem interface is added or removed, the Host administrator may need to explicitly update the configuration of impacted hosts. This process does not scale when more than a few Host and NVM subsystem interfaces are in use. Also, due to the de-centralized nature of this process, it also adds complexity when trying to use NVMe IP-based SANs in environments that require a high-degrees of automation.

    For these and other reasons, several companies have been collaborating on innovations that simplify and automate the discovery process used with NVMe IP-based SANs.

    During this session we will explain:
    • NVMe IP-based SAN discovery problem
    • The types of network topologies that can support the automated discovery of NVMe-oF Discovery controllers
    • Direct Discovery versus Centralized Discovery
    • An overview of the discovery protocol
  • Computational Storage – Driving Success, Driving Standards Recorded: Oct 26 2021 60 mins
    Bill Martin, Samsung; Jason Molgaard, Arm; Oscar Pinto, Samsung; Scott Shadley, NGD Systems
    SNIA develops a wide range of standards to enhance the interoperability of various storage systems. With new technologies like computational storage, standards do not exist. As companies develop solutions, questions arise. Should computational storage have standards for recommended behavior for hardware and software? Should an application programming interface be defined?

    At SNIA, over 250 volunteers answered yes, and new work is being defined both within SNIA and in collaboration with other industry standards bodies. Join leaders of the Computational Storage Technical Work Group as they discuss how they define and develop standards with input from many different companies and users, what they perceive as important today and moving forward, and how you can participate.​
  • Cloud Storage and Big Data, A Marriage Made in the Clouds Recorded: Oct 21 2021 60 mins
    Vincent Hsu, IBM; Andy Longworth, HPE; Chip Maurer, Dell Technologies
    This talk will focus on the history of “Big Data” and how it has pushed the storage envelope, eventually resulting in a seemingly perfect relationship with Cloud Storage. But local storage is the 3rd wheel in this relationship, and won’t go down easy. Can this marriage survive when Big Data is being pulled in two directions? Should Big Data pick one, or can the three of them live happily ever after? This webcast will cover:
    • The impact of edge computing
    • The erosion of the data center
    • Managing data-on-the-fly
    • Grid management
    • Next-gen Hadoop and related technologies
    • Supporting AI workloads
    • Data gravity and distributed data
  • Next-generation Interconnects: The Critical Importance of Connectors and Cables Recorded: Oct 19 2021 60 mins
    Kent Lusted, Intel; Brad Smith, NVIDIA; Sam Kocsis, Amphenol; Tim Lustig, NVIDIA
    Modern data centers systems consist of hundreds of sub-systems that are all connected with optical transceivers, copper cables, and industry standards-based connectors and cages. For interconnecting storage subsystems, two things are happening: Speeds are radically increasing making the maximum reach of copper wire interconnects very short and, at the same time, increasingly larger storage systems are expanding in size and much further apart. This is making longer reach optical technologies much more popular. However, optical interconnect technologies are more costly and complex compared to copper with a plethora of new buzz-words and technology concepts.

    The rate of change from the huge uptick in data demand is accelerating new product developments at an incredible pace. While much of the enterprise industry is still on 10G/40G/100GbE speeds, the next generation optics groups are already commercializing 800G with 1.6Tb transceivers in discussion! Today, it’s all about power, cost, and upgrade paths.

    In this SNIA Network Storage Forum webinar we’ll cover the latest in the impressive array of data center infrastructure solutions designed to address expanding requirements for higher-bandwidth and lower-power. This will include next-generation solutions leveraging copper and optics to deliver high signal integrity, lower-latency, and lower insertion loss to achieve maximum efficiency, speed, and density.
  • Storage for AI Applications Recorded: Oct 5 2021 57 mins
    Craig Tierney, NVIDIA; Brien Porter, Intel; Young Paik, Samsung; Tom Friend, Illuminosi
    Everyone enjoys having storage that is fast, reliable, scalable, and affordable. But it turns out different applications have different storage needs in terms of I/O requirements, capacity, data sharing, and security. Some need local storage, some need a centralized storage array, and others need distributed storage—which itself could be local or networked. One application might excel with block storage while another with file or object storage. With limited resources, it’s important to understand the storage intent of the applications in order to choose the right storage and storage networking strategy, rather than discovering the hard way that you’ve chosen the wrong solution for your application.

    Artificial intelligence (AI) is a technology which itself encompasses a broad range of use cases, largely divided into training and inference. In this webcast, we’ll look at what types of storage are typically needed for different aspects of AI, including different types of access (local vs. networked, block vs. file vs. object) and different performance requirements. And we will discuss how different AI implementations balance the use of on-premises vs. cloud storage. Tune in to this SNIA Networking Storage Forum (NSF) webcast to boost your natural (not artificial) intelligence about application-specific storage.

    After you watch the webcast, check out the Q&A blog at https://bit.ly/3vsq3nY
  • SAN Overview - How Fibre Channel Hosts and Targets Really Communicate Recorded: Sep 23 2021 67 mins
    AJ Casamento, Broadcom; Ed Mazurek, Cisco; John Kim, NVIDIA
    Each SAN transport has its own way to initialize and transfer data. So how do initiators (hosts) and targets (storage arrays) communicate in Fibre Channel (FC) Storage Area Networks (SANs)?

    Find out in this live webcast where Fibre Channel experts will answer:

    • How do FC links activate?
    • Is FC routable?
    • What kind of flow control is present in FC?
    • How do initiators find targets and set up their communication?
    • Finally, how does actual data get transferred since that is the ultimate goal?

    This session will introduce these concepts to demystify the FC SAN for the network professional.

    After you watch the webcast, check out the Q&A blog at https://bit.ly/3Gh43RU
  • Moving Genomics to the Cloud: Compute and Storage Considerations Recorded: Sep 9 2021 58 mins
    Michael McManus, Intel; Christopher Davidson, HPE; Torben Kling Petersen, HPE; Alex McDonald, SNIA CSTI Chair
    The use of genomics in modern biology has revolutionized the speed of innovation for the discovery of medicines. The COVID pandemic response has quickened genetic research and driven the rapid development of vaccines. Genomics, however, requires a significant amount of compute and data storage to aid discovery. This session is for IT professionals who are faced with delivering and supporting IT solutions for the required compute and data storage for genomics workflows. It will feature viewpoints from both the bioinformatics and technology perspectives with a focus on some of these compute and data storage challenges.
    We will discuss:
    • How to best store and manage these large genomics datasets
    • Methods for sharing these large datasets for collaborative analysis.
    • Legal and ethical implications of storing shareable data in the cloud
    • Transferring large data sets and the impact on storage and networking
    After you watch the presentation, check out the Q&A blog: https://bit.ly/SNIAGenomicQA
  • Extending Storage to the Edge - How It Should Affect Your Storage Strategy Recorded: Aug 25 2021 46 mins
    Erin Farr, IBM; Vincent Hsu, IBM; Jim Fister, The Decision Place
    Data gravity has pulled computing to the Edge and enabled significant advances in hybrid cloud deployments. The ability to run analytics from the datacenter to the Edge, where the data is created and lives, also creates new use cases for nearly every industry and company. However, this movement of compute to the Edge is not the only pattern to have emerged. How might these other use cases impact your storage strategy?
    This interactive webcast by the SNIA CSTI will focus on the following topics:
    • Emerging patterns of data movement and the use cases that drive them
    • Cloud Bursting
    • Federated Learning across the Edge and Hybrid Cloud
    • Considerations for distributed cloud storage architectures to match these emerging patterns
  • How to Easily Deploy Confidential Computing Recorded: Jul 28 2021 59 mins
    Steve Van Lare, Anjuna; Anand Kashyap, Fortanix; Michael Hoard Intel
    To counter the ever-increasing likelihood of catastrophic disruption and cost due to enterprise IT security threats, data center decision makers need to be vigilant in protecting their organization’s data. Confidential Computing is architected to provide security for data in use to meet this critical need for enterprises today.
    This webcast provides insight into how data center, cloud and edge applications may easily benefit from cost-effective, real-world Confidential Computing solutions. This educational discussion will provide end-user examples, tips on how to assess systems before and after deployment, as well as key steps to complete along the journey to mitigate threat exposure. Presenting are Steve Van Lare (Anjuna), Anand Kashyap (Fortanix), and Michael Hoard (Intel), who will discuss:
    · What would it take to build-your-own Confidential Computing solution?
    · Emergence of easily deployable, cost-effective Confidential Computing solutions
    · Real world usage examples and key technical, business and investment insights
    After you watch the webcast, check out the Q&A blog at https://bit.ly/3DqFKj6
  • Accelerate Disaggregated Storage to Optimize Data-Intensive Workloads Recorded: Jun 29 2021 61 mins
    Moderator: Tim Lustig, NVIDIA; Panelists: Kfir Wolfson, Pliops and John F. Kim, NVIDIA
    Thanks to big data, artificial intelligence (AI), the Internet of things (IoT), and 5G, demand for data storage continues to grow significantly. The rapid growth is causing storage and database-specific processing challenges within current storage architectures. New architectures, designed with millisecond latency, and high throughput, offer in-network and storage computational processing to offload and accelerate data-intensive workloads.
    Join technology innovators as they highlight how to drive value and accelerate SSD storage through the specialized implementation of key value technology to remove inefficiencies through a Data Processing Unit for hardware acceleration of the storage stacks, and a hardware-enabled Storage Data Processor to accelerate compute-intensive functions.
    By joining, you will learn why SSDs are a staple in modern storage architectures. These disaggegated systems use just a fraction of computational load and power while unlocking the full potential of networked flash storage.
  • Confidential Compute: Protecting Data in Use Recorded: Jun 23 2021 55 mins
    Paul O’Neill, Intel; Parviz Peiravi, Intel; Glyn Bowden, HPE
    As noted in our panel discussion “What is Confidential Computing and Why Should I Care?,” Confidential Computing is an emerging industry initiative focused on helping to secure data in use. The efforts can enable encrypted data to be processed in memory while lowering the risk of exposing it to the rest of the system, thereby reducing the potential for sensitive data to be exposed while providing a higher degree of control and transparency for users.

    As computing moves to span multiple environments from on-premises to public cloud to edge, organizations need protection controls that help safeguard sensitive IP and workload data wherever the data resides. In this live webcast we’ll cover:

    • How Confidential Computing works in multi-tenant cloud environments
    • How sensitive data can be isolated from other privileged portions of the stack
    • Applications in financial services, healthcare industries, and broader enterprise applications
    • Contributing to the Confidential Computing Consortium
  • Storage Technologies & Practices Ripe for Refresh: Part 2 Recorded: Jun 22 2021 40 mins
    John Kim, NVIDIA; Tom Friend, Illuminosi; Alex McDonald, Independent Consultant Vice Chair SNIA NSF
    So much of what we discuss in SNIA is the latest emerging technologies in storage. While it’s good to know all about the coming technologies, it’s also important to understand those technologies being sunsetted. In this series, we cover obsolete hardware, protocols, interfaces and other aspects of storage
    .
    In our second installment of our Storage Technologies & Practices Ripe for Refresh, we will cover older HDD device interfaces and file systems. Advice will be given on how to replace these in production environments as well as why these changes are recommended. Also, we will be covering protocols that you should consider removing from your networks, either older versions of protocols where only newer versions should be used, or protocols that have been supplanted by superior options and should be discontinued entirely.

    Finally, we will look at physical networking interfaces and cabling that are popular today but face an uncertain future as networking speeds grow ever faster.
  • What is Confidential Computing and Why Should I Care? Recorded: Jun 9 2021 58 mins
    Mike Bursell, Co-founder, Enarx Project; David Kaplan, AMD; Ronald Perez, Intel; Jim Fister, The Decision Place
    In the "arms race" of security, new defensive tactics are always needed. One significant approach is Confidential Computing: a technology that can isolate data and execution in a secure space on a system, which takes the concept of security to new levels. This SNIA Cloud Storage Technologies Initiative (CSTI) webcast will provide an introduction and explanation of Confidential Computing and will feature a panel of industry architects responsible for defining Confidential Compute. It will be a lively conversation on topics including:

    • The basics of hardware-based Trusted Execution Environments (TEEs) and how they work to enable confidential computing
    • How to architect solutions based around TEEs
    • How this foundation fits with other security technologies
    • Adjacencies to storage technologies
  • Data Movement and Computational Storage - a Panel Discussion Recorded: May 18 2021 59 mins
    Moderator: Jim Fister, SNIA CMSI; Panelists: Eli Tiomkin, Chair, SNIA CS SIG, Nidish Kamath, KIOXIA, David McIntyre, Samsung
    In modern analytics deployments, latency is the fatal flaw that limits the efficacy of the overall system.  Solutions move at the speed of decision, and microseconds could mean the difference between success and failure against competitive offerings.  Artificial Intelligence, Machine Learning, and In-Memory Analytics solutions have significantly reduced latency, but the sheer volume of data and its potential broad distribution across the globe prevents a single analytics node from efficiently harvesting and processing data.This panel discussion will feature industry experts discussing the different approaches to distributed analytics in the network and storage nodes. How does the storage providers of HDDs and SSD view the data creation and movement between the edge compute and the cloud? And how can computational storage be a solution to reduce data movement?
  • Security of Data on NVMe over Fabrics, the Armored Truck Way Recorded: May 12 2021 64 mins
    Claudio DeSanti, Dell; Nishant Lodha, Marvell; Hrishikesh Sathawane, Samsung; Eric Hibbard, Samsung; John Kim, NVIDIA
    With ever increasing threat vectors both inside and outside the data center, a compromised customer dataset can quickly result in a torrent of lost business data, eroded trust, significant penalties, and potential lawsuits. Vulnerabilities exist at every point when scaling out NVMe, which require data to be secured every time it leaves a server or the storage media, not only when leaving the data center. NVMe over Fabrics is poised to be the one of the most dominant transports of the future and securing and validating the vast amounts of data that would traverse this fabric is not just prudent, but paramount.

    Join the webcast to hear Industry experts discuss current and future strategies to secure and protect your mission critical data.

    You will learn:
    - Industry trends and regulations around data security
    - Potential threats and vulnerabilities
    - Existing security mechanisms and best practices
    - How to secure NVMe in flight and at rest
    - Ecosystem and market dynamics
    - Upcoming standards
    After you watch the presentation, check out the Q&A blog https://bit.ly/2Wnrk1Y
  • Great Storage Debate: Hyperconverged vs. Disaggregated vs. Centralized Recorded: May 4 2021 58 mins
    Christine McMonigal, Intel; John Kim, NVIDIA; Walt O'Brien, Dell; David McIntyre, Samsung
    In the ongoing evolution of the datacenter, a popular debate involves how storage is allocated and managed. There are three competing visions about how storage should be done; those are Hyperconverged Infrastructure (HCI), Disaggregated Storage, and Centralized Storage.

    IT architects, storage vendors, and industry analysts argue constantly over which is the best approach and even the exact definition of each. Isn’t Hyperconverged constrained? Is Disaggregated designed only for large cloud service providers? Is Centralized storage only for legacy applications?

    Tune in to debate these questions and more:
    • What is the difference between centralized, hyperconverged, and disaggregated infrastructure, when it comes to storage?
    • Where does the storage controller or storage intelligence live in each?
    • How and where can the storage capacity and intelligence be distributed?
    • What is the difference between distributing the compute or application and distributing the storage?
    • What is the role of a JBOF or EBOF (Just a Bunch of Flash or Ethernet Bunch of Flash) in these storage models?
    • What are the implications for data center, cloud, and edge?

    Join us for another SNIA Networking Storage Forum Great Storage Debate as leading storage minds converge to argue the definitions and merits of where to put the storage and storage intelligence.
    After you watch the debate, check out the Q&A blog: https://bit.ly/3kcAwA3
SNIA
The Storage Networking Industry Association (SNIA) is a non-profit organization made up of member companies spanning information technology. A globally recognized and trusted authority, SNIA’s mission is to lead the storage industry in developing and promoting vendor-neutral architectures, standards and educational services that facilitate the efficient management, movement and security of information.

Embed in website or blog

Successfully added emails: 0
Remove all
  • Title: Expert Insights: Expanding the Data Center with FCoE
  • Live at: Aug 20 2014 8:00 pm
  • Presented by: SNIA ESF
  • From:
Your email has been sent.
or close