Accelerating Discovery with In Situ Electron Microscopy

Presented by

Jordan Moering, Protochips and Ray Unocic, Oak Ridge National Lab

About this talk

As the imaging and analytical capabilities of the modern transmission electron microscope (TEM) have improved, it has become an increasingly vital tool to characterize and study nanoscale materials. With the advent of MEMS-based sample supports, researchers are now capable of easily heating and electrically characterizing their sample in situ, directly imaging the dynamic sample reactions occurring at the atomic scale. For semiconductor and electrical device applications, Protochips has developed focused ion beam (FIB) tools and sample preparation workflows that enable researchers to prepare FIB lamellae directly on MEMS-based sample supports, allowing pA-level electrical characterization of their sample at atomic resolution. With the growing interest surrounding graphene and other 2D materials, in situ TEM has become increasingly utilized to accelerate the discovery of these next-generation materials. At Oak Ridge National Laboratory, researchers Xiahan Sang and Ray Unocic used in situ heating to synthesize and characterize complex structural and chemical transformations of edge defects at atomic resolution. Their work pioneered new means by which 2D materials could be engineered directly in the TEM, opening new avenues for materials development and characterization. These and other novel results in the field of material science will be presented in this webinar.

Related topics:

More from this channel

Upcoming talks (0)
On-demand talks (84)
Subscribers (39378)
Delivering the latest news, views and information for the global physics community.