Machine Learning towards Precision Medicine

Presented by

Paul Hellwig Director, Research & Development, at Elsevier Health Analytics

About this talk

Medicine is complex. Correlations between diseases, medications, symptoms, lab data and genomics are of a complexity that cannot be fully comprehended by humans anymore. Machine learning methods are required that help mining these correlations. But a pure technological or algorithm-driven approach will not suffice. We need to get physicians and other domain experts on board, we need to gain their trust in the predictive models we develop. Elsevier Health Analytics has developed a first version of the Medical Knowledge Graph, which identifies correlations (ideally: causations) between diseases, and between diseases and treatments. On a dataset comprising 6 million patient lives we have calculated 2000+ models predicting the development of diseases. Every model adjusts for ~3000 covariates. Models are based on linear algorithms. This allows a graphical visualization of correlations that medical personnel can work with.

Related topics:

More from this channel

Upcoming talks (4)
On-demand talks (588)
Subscribers (87958)
Data is the foundation of any organization and therefore, it is paramount that it is managed and maintained as a valuable resource. Subscribe to this channel to learn best practices and emerging trends in a variety of topics including data governance, analysis, quality management, warehousing, business intelligence, ERP, CRM, big data and more.